ﻻ يوجد ملخص باللغة العربية
Quantum metrology makes use of quantum mechanics to improve precision measurements and measurement sensitivities. It is usually formulated for time-independent Hamiltonians but time-dependent Hamiltonians may offer advantages, such as a $T^4$ time dependence of the Fisher information which cannot be reached with a time-independent Hamiltonian. In Optimal adaptive control for quantum metrology with time-dependent Hamiltonians (Nature Communications 8, 2017), Shengshi Pang and Andrew N. Jordan put forward a Shortcut-to-adiabaticity (STA)-like method, specifically an approach formally similar to the counterdiabatic approach, adding a control term to the original Hamiltonian to reach the upper bound of the Fisher information. We revisit this work from the point of view of STA to set the relations and differences between STA-like methods in metrology and ordinary STA. This analysis paves the way for the application of other STA-like techniques in parameter estimation. In particular we explore the use of physical unitary transformations to propose alternative time-dependent Hamiltonians which may be easier to implement in the laboratory.
A combination of the digitized shortcut-to-adiabaticity (STA) and the sequential digitized adiabaticity is implemented in a superconducting quantum device to determine electronic states in two example systems, the H2 molecule and the topological Bern
Based on a `shortcut-to-adiabaticity (STA) scheme, we theoretically design and experimentally realize a set of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a precise microwave control, the qubit is driven t
We extend a recent method to shortcut the adiabatic following to internal bosonic Josephson junctions in which the control parameter is the linear coupling between the modes. The approach is based on the mapping between the two-site Bose-Hubbard Hami
We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance prop
We introduce a bang-bang shortcut to adiabaticity for the Dicke model, which we implement via a 2-D array of trapped ions in a Penning trap with a spin-dependent force detuned close to the center-of-mass drumhead mode. Our focus is on employing this