ترغب بنشر مسار تعليمي؟ اضغط هنا

Flares in Open Clusters with K2. II. Pleiades, Hyades, Praesepe, Ruprecht 147, and M67

85   0   0.0 ( 0 )
 نشر من قبل Ekaterina Ilin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. Their occurrence rates and energy distributions trace stellar characteristics such as mass and age. But before flares can be used to constrain stellar properties, the flaring-age-mass relation requires proper calibration. This work sets out to quantify flaring activity of independently age-dated main sequence stars for a broad range of spectral types using optical light curves obtained by the Kepler satellite. Drawing from the complete K2 archive, we searched 3435 $sim 80$ day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence (Pleiades) to 3.6 Gyr (M67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-M dwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. The flare energy distribution was similar in the entire parameter space, following a power law relation with exponent $alphaapprox 1.84-2.39$. The flaring rates declined with age, and declined faster for higher mass stars. We found evidence that a rapid decline in flaring activity occurred in M1-M2 dwarfs around Hyades/Praesepe age, when these stars spun down to rotation periods of about 10 days, while higher mass stars had already transitioned to lower flaring rates, and lower mass stars still resided in the saturated activity regime. (abridged)



قيم البحث

اقرأ أيضاً

Mixing mechanisms bring the Li from the base of the convective zone to deeper and warmer layers where it is destroyed. These mechanisms are investigated by comparing observations of Li abundances in stellar atmospheres to models of stellar evolution. Observations in open cluster are especially suitable for this comparison, since their age and metallicity are homogeneous among their members and better determined than in field stars. In this work, we compare the evolution of Li abundances in three different clusters: the Hyades, NGC752, and M67. Our models are calculated with microscopic diffusion and transport of chemicals by meridional circulation, and calibrated on the Sun. These comparisons allow us to follow the evolution of Li abundance as a function of stellar mass in each cluster and as a function of the age by comparing this evolution in each cluster. We evaluate the efficiency of the mixing mechanisms used in the models, and we try to identify the lacking mechanisms to reproduce the observed evolution of Li abundance.
241 - Guillermo Torres 2019
We report our spectroscopic monitoring of the detached, grazing, and slightly eccentric 12-day double-lined eclipsing binary EPIC 219568666 in the old nearby open cluster Ruprecht 147. This is the second eclipsing system to be analyzed in this cluste r, following our earlier study of EPIC 219394517. Our analysis of the radial velocities combined with the light curve from the K2 mission yield absolute masses and radii for EPIC 219568666 of M1 = 1.121 +/- 0.013 M(Sun) and R1 = 1.1779 +/- 0.0070 R(Sun) for the F8 primary, and M2 = 0.7334 +/- 0.0050 M(Sun) and R2 = 0.640 +/- 0.017 R(Sun) for the faint secondary. Comparison with current stellar evolution models calculated for the known metallicity of the cluster points to a primary star that is oversized, as is often seen in active M dwarfs, but this seems rather unlikely for a star of its mass and with a low level of activity. Instead, we suspect a subtle bias in the radius ratio inferred from the photometry, despite our best efforts to avoid it, which may be related to the presence of spots on one or both stars. The radius sum for the binary, which bypasses this possible problem, indicates an age of 2.76 +/- 0.61 Gyr that is in good agreement with a similar estimate from the binary in our earlier study.
Randich and Schmitt [1995, A&A 298, 115] found that the coronal activity of solar-type and low mass stars in Praesepe is significantly lower than that of stars in the Hyades cluster. We have carried out several tests in order to find a possible expla nation for this result. We have measured radial velocities of two groups of Praesepe stars (a dF-dK sample and a dM sample) and have measured H$alpha$ as a chromospheric activity index for the dM sample. We conclude that the Praesepe catalog used in the X-ray analysis does not contain a significant number of non-members. The comparison of the H$alpha$ equivalent widths for the M dwarfs in Praesepe with those in the Hyades indicates that, at least for stars in this mass range, the Praesepe stars are as active or more active than their Hyades counterparts. We have also analyzed a few ROSAT PSPC pointings of Praesepe in order to obtain a new and independent estimate of the X-ray luminosities and upper limits for a small sample of Praesepe members concluding that the small differences between the old and new upper limits are not large enough to explain the dichotomy in the X-ray properties of Praesepe and the Hyades. Therefore, our examination of the available data does not provide a clear reason to explain why the X-ray luminosity functions of the two clusters are different. Part of the explanation could be found in the binaries. Speculatively, these clusters could have different orbital period distributions, with more short period binaries among the Hyades, which would show larger coronal activity.
Eclipsing binaries in star clusters offer more stringent tests of stellar evolution theory than field binaries because models must not only match the binary properties, but also the radiative properties of all other cluster members at a single chemic al composition and a single age. Here we report new spectroscopic observations of the G type, detached eclipsing binary EPIC 219394517 in the open cluster Ruprecht 147 ([Fe/H] = +0.10), which was observed in late 2015 by the K2 mission. A joint analysis of our radial-velocity measurements and the K2 light curve shows the 6.5 day orbit to be very nearly circular. We derive highly precise masses of 1.0782 +/- 0.0019 Msun and 1.0661 (+0.0027/-0.0021) Msun, radii of 1.055 +/- 0.011 Rsun and 1.042 +/- 0.012 Rsun, and effective temperatures of 5930 +/- 100 K and 5880 +/- 100 K for the primary and secondary, respectively. The distance we infer, 283 (+18/-16) pc, corresponds to a parallax in good agreement with the Gaia/DR2 value for the star. Current stellar evolution models from the MIST and PARSEC series match the above physical properties very well at ages of 2.48 and 2.65 Gyr. Isochrones for these same ages and the measured composition, along with our reddening estimate for EPIC 219394517, also show generally good agreement with the optical and near-infrared color-magnitude diagrams of the cluster, which can be constructed with no free parameters as the distances of all member stars are known from Gaia.
Observations of stellar clusters have had a tremendous impact in forming our understanding of stellar evolution. The open cluster M67 has a particularly important role as a calibration benchmark for stellar evolution theory due to its near solar comp osition and age. As a result, it has been observed extensively, including attempts to detect solar-like oscillations in its main sequence and red giant stars. However, any asteroseismic inference has so far remained elusive due to the difficulty in measuring these extremely low amplitude oscillations. Here we report the first unambiguous detection of solar-like oscillations in the red giants of M67. We use data from the Kepler ecliptic mission, K2, to measure the global asteroseismic properties. We find a model-independent seismic-informed distance of 816+/-11pc, or (m-M)o=9.57+/-0.03mag, an average red-giant mass of 1.36+/-0.01Msun, in agreement with the dynamical mass from an eclipsing binary near the cluster turn-off, and ages of individual stars compatible with isochrone fitting. We see no evidence of strong mass loss on the red giant branch. We also determine seismic log g of all the cluster giants with a typical precision of ~0.01dex. Our results generally show good agreement with independent methods and support the use of seismic scaling relations to determine global properties of red giant stars with near solar metallicity. We further illustrate that the data are of such high quality, that future work on individual mode frequencies should be possible, which would extend the scope of seismic analysis of this cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا