ﻻ يوجد ملخص باللغة العربية
Large intelligent surface (LIS) has recently emerged as a potential low-cost solution to reshape the wireless propagation environment for improving the spectral efficiency. In this paper, we consider a downlink millimeter-wave (mmWave) multiple-input-multiple-output (MIMO) system, where an LIS is deployed to assist the downlink data transmission from a base station (BS) to a user equipment (UE). Both the BS and the UE are equipped with a large number of antennas, and a hybrid analog/digital precoding/combining structure is used to reduce the hardware cost and energy consumption. We aim to maximize the spectral efficiency by jointly optimizing the LISs reflection coefficients and the hybrid precoder (combiner) at the BS (UE). To tackle this non-convex problem, we reformulate the complex optimization problem into a much more friendly optimization problem by exploiting the inherent structure of the effective (cascade) mmWave channel. A manifold optimization (MO)-based algorithm is then developed. Simulation results show that by carefully devising LISs reflection coefficients, our proposed method can help realize a favorable propagation environment with a small channel matrix condition number. Besides, it can achieve a performance comparable to those of state-of-the-art algorithms, while at a much lower computational complexity.
Hybrid analog-digital (A/D) transceivers designed for millimeter wave (mmWave) systems have received substantial research attention, as a benefit of their lower cost and modest energy consumption compared to their fully-digital counterparts. We furth
This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studie
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and