ﻻ يوجد ملخص باللغة العربية
We show that a Frobenius sturcture is equivalent to a dually flat sturcture in information geometry. We define a multiplication structure on the tangent spaces of statistical manifolds, which we call the statistical product. We also define a scalar quantity, which we call the Yukawa term. By showing two examples from statistical mechanics, first the classical ideal gas, second the quantum bosonic ideal gas, we argue that the Yukawa term quantifies information generation, which resembles how mass is generated via the 3-points interaction of two fermions and a Higgs boson (Higgs mechanism). In the classical case, The Yukawa term is identically zero, whereas in the quantum case, the Yukawa term diverges as the fugacity goes to zero, which indicates the Bose-Einstein condensation.
A recently introduced canonical divergence $mathcal{D}$ for a dual structure $(mathrm{g}, abla, abla^*)$ is discussed in connection to other divergence functions. Finally, open problems concerning symmetry properties are outlined.
We prove the correspondence between the information geometry of a signal filter and a Kahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a Kahler manifold. The square of the complex cepst
In Riemannian geometry geodesics are integral curves of the Riemannian distance gradient. We extend this classical result to the framework of Information Geometry. In particular, we prove that the rays of level-sets defined by a pseudo-distance are g
We induce a Poisson algebra ${cdot,cdot}_{mathcal{C}_{n,N}}$ on the configuration space $mathcal{C}_{n,N}$ of $N$ twisted polygons in $mathbb{RP}^{n-1}$ from the swapping algebra cite{L12}, which is found coincide with Faddeev-Takhtajan-Volkov algebr
We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean field framework. We show how to separate the geometric contribution to the superfluid weight from the conventional one