Characterizing Fano Resonances During Recollision


الملخص بالإنكليزية

When intense light irradiates a quantum system, an ionizing electron recollides with its parent ion within the same light cycle and, during that very brief (few femtosecond) encounter, its kinetic energy sweeps from low to high energy and back. Therefore, recollision offers unprecedented time resolution and it is the foundation on which attosecond science is built. For simple systems, recolliding trajectories are shaped by the strong field acting together with the Coulomb potential and they can be readily calculated and measured. However, for more complex systems, multielectron effects are also important because they dynamically alter the recolliding wave packet trajectories. Here, we theoretically study Fano resonances, one of the most accessible multielectron effects, and we show how multielectron dynamics can be unambiguously isolated when we use in situ measurement. The general class of in situ measurement can provide key information needed for time-dependent ab initio electronic structure theory and will allow us to measure the ultimate time response of matter.

تحميل البحث