Uniqueness and weak-BV stability for $2times 2$ conservation laws


الملخص بالإنكليزية

Let a 1-d system of hyperbolic conservation laws, with two unknowns, be endowed with a convex entropy. We consider the family of small $BV$ functions which are global solutions of this equation. For any small $BV$ initial data, such global solutions are known to exist. Moreover, they are known to be unique among $BV$ solutions verifying either the so-called Tame Oscillation Condition, or the Bounded Variation Condition on space-like curves. In this paper, we show that these solutions are stable in a larger class of weak (and possibly not even $BV$) solutions of the system. This result extends the classical weak-strong uniqueness results which allow comparison to a smooth solution. Indeed our result extends these results to a weak-$BV$ uniqueness result, where only one of the solutions is supposed to be small $BV$, and the other solution can come from a large class. As a consequence of our result, the Tame Oscillation Condition, and the Bounded Variation Condition on space-like curves are not necessary for the uniqueness of solutions in the $BV$ theory, in the case of systems with 2 unknowns. The method is $L^2$ based. It builds up from the theory of a-contraction with shifts, where suitable weight functions $a$ are generated via the front tracking method.

تحميل البحث