Recently it was shown that the multipolar Kondo problem, wherein a quantum impurity carrying higher-rank multipolar moments interacts with conduction electrons, leads to novel non-Fermi liquid states. Because of the multipolar character of the local moments, the form of the interaction with conduction electrons is strongly dependent on the orbital-symmetry of the conduction electrons via crystalline symmetry constraints. This suggests that there may exist a variety of different non-Fermi liquid states in generic multipolar Kondo problems depending on the character of conduction electrons. In this work, using renormalization group analysis, we investigate a model where the multipolar local moment is coupled to conduction electrons with two different orbital-symmetry components, namely $p$-wave and $f$-wave symmetries. When each orbital-symmetry component is present alone, non-Fermi liquid states with exactly the same thermodynamic singularities appear. When both orbital-symmetry components are allowed, however, a completely different non-Fermi liquid state arises via the quantum fluctuations in the mixed scattering channels. This remarkable result suggests that the multipolar Kondo problem presents novel opportunities for the discovery of unexpected non-Fermi liquid states.