ﻻ يوجد ملخص باللغة العربية
Long-lived radioactive nuclides, such as $^{40}$K, $^{232}$Th, $^{235}$U and $^{238}$U, contribute to persistent heat production in the mantle of terrestrial-type planets. As refractory elements, the concentrations of Th and U in a terrestrial exoplanet are implicitly reflected in the photospheric abundances in the stellar host. However, a robust determination of these stellar abundances is difficult in practice owing to the general paucity and weakness of the relevant spectral features. We draw attention to the refractory, $r-$process element europium, which may be used as a convenient and practical proxy for the population analysis of radiogenic heating in exoplanetary systems. As a case study, we present a determination of Eu abundances in the photospheres of $alpha$ Cen A and B. We find that europium is depleted with respect to iron by $sim$ 0.1 dex and to silicon by $sim$ 0.15 dex compared to solar in both binary components. To first order, the measured Eu abundances can be converted to the abundances of $^{232}$Th, $^{235}$U and $^{238}$U with observational constraints while the abundance of $^{40}$K is approximated independently with a Galactic chemical evolution model. We find that the radiogenic heat budget in an $alpha$-Cen-Earth is $73.4^{+8.3}_{-6.9}$ TW upon its formation and $8.8^{+1.7}_{-1.3}$ TW at the present day, respectively $23pm5$ % and $54pm5$ % lower than that in the Hadean and modern Earth. As a consequence, mantle convection in an $alpha$-Cen-Earth is expected to be overall weaker than that of the Earth (assuming other conditions are the same) and thus such a planet would be less geologically active, suppressing its long-term potential to recycle its crust and volatiles. With Eu abundances being available for a large sample of Sun-like stars, the proposed approach can extend our ability to make predictions about the nature of other rocky worlds.
We find that recent results from the KamLAND collaboration on geologically produced antineutrinos, N(U+Th) = 28+16-15 events, correspond to a radiogenic heat production from Uranium and Thorium decay chains H(U+Th) = 38+35-33 TW. The 99% confidence l
Observations and models suggest that the conditions to develop lightning may be present in cloud-forming extrasolar planetary and brown dwarf atmospheres. Whether lightning on these objects is similar to or very different from what is known from the
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan
Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological a
For terrestrial exoplanets with thin atmospheres or no atmospheres, the surface contributes light to the reflected light signal of the planet. Measurement of the variety of disk-integrated brightnesses of bodies in the Solar System and the variation