ﻻ يوجد ملخص باللغة العربية
In countries experiencing unprecedented waves of urbanization, there is a need for rapid and high quality urban street design. Our study presents a novel deep learning powered approach, DeepStreet (DS), for automatic street network generation that can be applied to the urban street design with local characteristics. DS is driven by a Convolutional Neural Network (CNN) that enables the interpolation of streets based on the areas of immediate vicinity. Specifically, the CNN is firstly trained to detect, recognize and capture the local features as well as the patterns of the existing street network sourced from the OpenStreetMap. With the trained CNN, DS is able to predict street networks future expansion patterns within the predefined region conditioned on its surrounding street networks. To test the performance of DS, we apply it to an area in and around the Eixample area in the City of Barcelona, a well known example in the fields of urban and transport planning with iconic grid like street networks in the centre and irregular road alignments farther afield. The results show that DS can (1) detect and self cluster different types of complex street patterns in Barcelona; (2) predict both gridiron and irregular street and road networks. DS proves to have a great potential as a novel tool for designers to efficiently design the urban street network that well maintains the consistency across the existing and newly generated urban street network. Furthermore, the generated networks can serve as a benchmark to guide the local plan-making especially in rapidly developing cities.
Deep learning applications in shaping ad hoc planning proposals are limited by the difficulty in integrating professional knowledge about cities with artificial intelligence. We propose a novel, complementary use of deep neural networks and planning
Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aw
There is a prevailing trend to study urban morphology quantitatively thanks to the growing accessibility to various forms of spatial big data, increasing computing power, and use cases benefiting from such information. The methods developed up to now
Hand-crafting generalised decision-making rules for real-world urban autonomous driving is hard. Alternatively, learning behaviour from easy-to-collect human driving demonstrations is appealing. Prior work has studied imitation learning (IL) for auto
Handwritten character recognition (HCR) is a challenging learning problem in pattern recognition, mainly due to similarity in structure of characters, different handwriting styles, noisy datasets and a large variety of languages and scripts. HCR prob