ﻻ يوجد ملخص باللغة العربية
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a novel sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.
As a nuclear spin model of scalable quantum register, the one-dimensional chain of the magnetic atoms with nuclear spins 1/2 substituting the basic atoms in the plate of nuclear spin free easy-axis 3D antiferromagnet is considered. It is formulated t
Exotic magnetic structures, such as magnetic skyrmions and domain walls, are becoming more important in nitrogen-vacancy center scanning magnetometry. However, a systematic imaging approach to mapping stray fields with fluctuation of several millites
Recently we have demonstrated AC magnetic field sensing scheme using a simple continuous-wave optically detected magnetic resonance of nitrogen-vacancy centers in diamond [Appl. Phys. Lett. 113, 082405 (2018)]. This scheme is based on electronic spin
Current density distributions in active integrated circuits (ICs) result in patterns of magnetic fields that contain structural and functional information about the IC. Magnetic fields pass through standard materials used by the semiconductor industr
The negatively-charged NV$^-$-center in diamond has shown great success in nanoscale, high-sensitivity magnetometry. Efficient fluorescence detection is crucial for improving the sensitivity. Furthermore, integrated devices enable practicable sensors