ﻻ يوجد ملخص باللغة العربية
Let $H$ be a $k$-uniform $D$-regular simple hypergraph on $N$ vertices. Based on an analysis of the Rodl nibble, Alon, Kim and Spencer (1997) proved that if $k ge 3$, then $H$ contains a matching covering all but at most $ND^{-1/(k-1)+o(1)}$ vertices, and asked whether this bound is tight. In this paper we improve their bound by showing that for all $k > 3$, $H$ contains a matching covering all but at most $ND^{-1/(k-1)-eta}$ vertices for some $eta = Theta(k^{-3}) > 0$, when $N$ and $D$ are sufficiently large. Our approach consists of showing that the Rodl nibble process not only constructs a large matching but it also produces many well-distributed `augmenting stars which can then be used to significantly improve the matching constructed by the Rodl nibble process. Based on this, we also improve the results of Kostochka and Rodl (1998) and Vu (2000) on the size of matchings in almost regular hypergraphs with small codegree. As a consequence, we improve the best known bounds on the size of large matchings in combinatorial designs with general parameters. Finally, we improve the bounds of Molloy and Reed (2000) on the chromatic index of hypergraphs with small codegree (which can be applied to improve the best known bounds on the chromatic index of Steiner triple systems and more general designs).
A graph $G$ whose edges are coloured (not necessarily properly) contains a full rainbow matching if there is a matching $M$ that contains exactly one edge of each colour. We refute several conjectures on matchings in hypergraphs and full rainbow matc
A family of perfect matchings of $K_{2n}$ is $t$-$intersecting$ if any two members share $t$ or more edges. We prove for any $t in mathbb{N}$ that every $t$-intersecting family of perfect matchings has size no greater than $(2(n-t) - 1)!!$ for suffic
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seym
In this paper, we consider the average size of independent edge sets, also called matchings, in a graph. We characterize the extremal graphs for the average size of matchings in general graphs and trees. In addition, we obtain inequalities between th
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs