ﻻ يوجد ملخص باللغة العربية
Using neural networks, we integrate the ability to account for Doppler smearing due to a pulsars orbital motion with the pulsar population synthesis package psrpoppy to develop accurate modeling of the observed binary pulsar population. As a first application, we show that binary neutron star systems where the two components have highly unequal mass are, on average, easier to detect than systems which are symmetric in mass. We then investigate the population of ultra-compact ($1.5 , {rm min} leq P_{rm b} leq 15,rm min$) neutron star--white dwarf (NS--WD) and double neutron star (DNS) systems which are promising sources for the Laser Interferometer Space Antenna gravitational-wave detector. Given the non-detection of these systems in radio surveys thus far, we estimate a 95% confidence upper limit of $sim$1450 and $sim$1100 ultra-compact NS--WD and DNS systems in the Milky Way that are beaming towards the Earth respectively. We also show that using survey integration times in the range 20~s to 200~s with time-domain resampling will maximize the signal-to-noise ratio as well as the probability of detection of these ultra-compact binary systems. Among all the large scale radio pulsar surveys, those that are currently being carried out at the Arecibo radio telescope have $sim$50--80% chance of detecting at least one of these systems using current integration integration times and $sim$80--95% using optimal integration times in the next several years.
We study the optical and near-infrared luminosities and detectability of radioactively powered electromagnetic transients (macronovae) occuring in the aftermath of binary neutron star and neutron star black hole mergers. We explore the transients tha
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Mo
Electromagnetic (EM) follow-up of gravitational wave (GW) candidates is important for verifying their astrophysical nature and studying their physical properties. While the next generation of GW detectors will have improved sensitivities to make the
IGR J17062-6143 is an ultra-compact X-ray binary (UCXB) with an orbital period of 37.96 min. It harbours a millisecond X-ray pulsar that is spinning at 163 Hz and and has continuously been accreting from its companion star since 2006. Determining the
To confirm the nature of the donor star in the ultra-compact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3,000$-$10,000 {AA}) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or abs