ﻻ يوجد ملخص باللغة العربية
The increasing connectivity of data and cyber-physical systems has resulted in a growing number of cyber-attacks. Real-time detection of such attacks, through the identification of anomalous activity, is required so that mitigation and contingent actions can be effectively and rapidly deployed. We propose a new approach for aggregating unsupervised anomaly detection algorithms and incorporating feedback when it becomes available. We apply this approach to open-source real datasets and show that both aggregating models, which we call experts, and incorporating feedback significantly improve the performance. An important property of the proposed approaches is their theoretical guarantees that they perform close to the best superexpert, which can switch between the best performing experts, in terms of the cumulative average losses.
We present new methods for batch anomaly detection in multivariate time series. Our methods are based on maximizing the Kullback-Leibler divergence between the data distribution within and outside an interval of the time series. An empirical analysis
Detection of emerging topics are now receiving renewed interest motivated by the rapid growth of social networks. Conventional term-frequency-based approaches may not be appropriate in this context, because the information exchanged are not only text
We formulate and study a novel multi-armed bandit problem called the qualitative dueling bandit (QDB) problem, where an agent observes not numeric but qualitative feedback by pulling each arm. We employ the same regret as the dueling bandit (DB) prob
We consider the problem of detecting anomalies among a given set of processes using their noisy binary sensor measurements. The noiseless sensor measurement corresponding to a normal process is 0, and the measurement is 1 if the process is anomalous.
We consider stochastic convex optimization problems, where several machines act asynchronously in parallel while sharing a common memory. We propose a robust training method for the constrained setting and derive non asymptotic convergence guarantees