ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

104   0   0.0 ( 0 )
 نشر من قبل Sven Gowal
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial training and its variants have become de facto standards for learning robust deep neural networks. In this paper, we explore the landscape around adversarial training in a bid to uncover its limits. We systematically study the effect of different training losses, model sizes, activation functions, the addition of unlabeled data (through pseudo-labeling) and other factors on adversarial robustness. We discover that it is possible to train robust models that go well beyond state-of-the-art results by combining larger models, Swish/SiLU activations and model weight averaging. We demonstrate large improvements on CIFAR-10 and CIFAR-100 against $ell_infty$ and $ell_2$ norm-bounded perturbations of size $8/255$ and $128/255$, respectively. In the setting with additional unlabeled data, we obtain an accuracy under attack of 65.88% against $ell_infty$ perturbations of size $8/255$ on CIFAR-10 (+6.35% with respect to prior art). Without additional data, we obtain an accuracy under attack of 57.20% (+3.46%). To test the generality of our findings and without any additional modifications, we obtain an accuracy under attack of 80.53% (+7.62%) against $ell_2$ perturbations of size $128/255$ on CIFAR-10, and of 36.88% (+8.46%) against $ell_infty$ perturbations of size $8/255$ on CIFAR-100. All models are available at https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness.



قيم البحث

اقرأ أيضاً

Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so -called adversarial patches: clearly visible, but adversarially crafted rectangular patches in images. These patches can easily be printed and applied in the physical world. While defenses against imperceptible adversarial examples have been studied extensively, robustness against adversarial patches is poorly understood. In this work, we first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image. Then, we apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB. Additionally, in contrast to adversarial training on imperceptible adversarial examples, our adversarial patch training does not reduce accuracy.
119 - Eric Wong , J. Zico Kolter 2017
We propose a method to learn deep ReLU-based classifiers that are provably robust against norm-bounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, thou gh it may flag some non-adversarial examples as well. The basic idea is to consider a convex outer approximation of the set of activations reachable through a norm-bounded perturbation, and we develop a robust optimization procedure that minimizes the worst case loss over this outer region (via a linear program). Crucially, we show that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The end result is that by executing a few more forward and backward passes through a slightly modified version of the original network (though possibly with much larger batch sizes), we can learn a classifier that is provably robust to any norm-bounded adversarial attack. We illustrate the approach on a number of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST, we produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded $ell_infty$ norm less than $epsilon = 0.1$), and code for all experiments in the paper is available at https://github.com/locuslab/convex_adversarial.
In this paper, we propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors and make it easier to simulate output distribution of deep neural network. With the se observations, we propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection. In specific, we study the distributional difference of hidden layer output between natural and adversarial examples, and propose to use the randomness of Bayesian neural network (BNN) to simulate hidden layer output distribution and leverage the distribution dispersion to detect adversarial examples. The advantage of BNN is that the output is stochastic while neural networks without random components do not have such characteristics. Empirical results on several benchmark datasets against popular attacks show that the proposed BATer outperforms the state-of-the-art detectors in adversarial example detection.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
152 - Ali Borji 2020
Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how sha pe bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the inputs edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $ell_infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~url{https://github.com/aliborji/Shapedefence.git}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا