ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on sharp weighted bound for Haar shift and multiplier

99   0   0.0 ( 0 )
 نشر من قبل Chih-Chieh Hung
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide elementary proofs for the terms that are left in the work of Kelly Bickel, Sandra Pott, Maria C. Reguera, Eric T. Sawyer, Brett D. Wick who proved the sharp weighted $A_2$ bound for Haar shifts and Haar multiplier. Our proofs use weighted square function estimate, Carleson embedding and Wilsons system.



قيم البحث

اقرأ أيضاً

The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fr actional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
146 - Ioannis Parissis 2008
Let Pd denote the space of all real polynomials of degree at most d. It is an old result of Stein and Wainger that for every polynomial P in Pd: |p.v.int_R {e^{iP(t)} dt/t} | < C(d) for some constant C(d) depending only on d. On the other hand, Car bery, Wainger and Wright claim that the true order of magnitude of the above principal value integral is log d. We prove this conjecture.
116 - Michael T. Lacey 2008
Hankel operators lie at the junction of analytic and real-variables. We will explore this junction, from the point of view of Haar shifts and commutators. An decomposition of the commutator [H,b] into paraproducts is presented.
100 - Jayanta Sarkar 2021
In this article, we generalize a theorem of Victor L. Shapiro concerning nontangential convergence of the Poisson integral of a $L^p$-function. We introduce the notion of $sigma$-points of a locally finite measure and consider a wide class of convolu tion kernels. We show that convolution integrals of a measure have nontangential limits at $sigma$-points of the measure. We also investigate the relationship between $sigma$-point and the notion of the strong derivative introduced by Ramey and Ullrich. In one dimension, these two notions are the same.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا