Apparent Ferromagnetism in Exfoliated Ultra-thin Pyrite Sheets


الملخص بالإنكليزية

Experimental evidence for ferromagnetic ordering in isotropic atomically thin two-dimensional crystals has been missing until a bilayer Cr2Ge2Te6, and a three-atom thick monolayer CrI3 are shown to retain ferromagnetic ordering at finite temperatures. Here, we demonstrate successful isolation of a non-van der Waals type ultra-thin nanosheet of FeS2 derived from naturally occurring pyrite mineral (FeS2) by means of liquid-phase exfoliation. Structural characterizations imply that (111) oriented sheets are predominant and is supported theoretically by means of density functional theory surface energy calculations. Spin-polarized density theory calculations further predicted that (111) oriented three-atom thick pyrite sheet has a stable ferromagnetic ground state different from its diamagnetic bulk counterpart. This theoretical finding is evaluated experimentally employing low temperature superconducting quantum interference device measurements and observed an anomalous ferromagnetic kind of behavior.

تحميل البحث