ﻻ يوجد ملخص باللغة العربية
We present a time-dependent density functional theory (TDDFT) based approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state. These quantities are the necessary ingredients to solve the Kramers--Heisenberg equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where TDDFT eigenstates are treated as a configuration interaction wavefunction with single excitations, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. We illustrate the applicability of the method by calculating the 2p4d RIXS maps of three representative Ruthenium complexes and comparing them to experimental results. The method is able to accurately capture all the experimental features in all three complexes, with relative energies correct to within 0.6 eV at the cost of two independent TDDFT calculations.
The Liouville-Lanczos approach to linear-response time-dependent density-functional theory is generalized so as to encompass electron energy-loss and inelastic X-ray scattering spectroscopies in periodic solids. The computation of virtual orbitals an
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of che
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi
Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are co
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent