ترغب بنشر مسار تعليمي؟ اضغط هنا

A time-dependent density functional theory protocol for resonant inelastic X-ray scattering calculations

118   0   0.0 ( 0 )
 نشر من قبل Daniel Nascimento
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a time-dependent density functional theory (TDDFT) based approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state. These quantities are the necessary ingredients to solve the Kramers--Heisenberg equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where TDDFT eigenstates are treated as a configuration interaction wavefunction with single excitations, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. We illustrate the applicability of the method by calculating the 2p4d RIXS maps of three representative Ruthenium complexes and comparing them to experimental results. The method is able to accurately capture all the experimental features in all three complexes, with relative energies correct to within 0.6 eV at the cost of two independent TDDFT calculations.



قيم البحث

اقرأ أيضاً

The Liouville-Lanczos approach to linear-response time-dependent density-functional theory is generalized so as to encompass electron energy-loss and inelastic X-ray scattering spectroscopies in periodic solids. The computation of virtual orbitals an d the manipulation of large matrices are avoided by adopting a representation of response orbitals borrowed from (time-independent) density-functional perturbation theory and a suitable Lanczos recursion scheme. The latter allows the bulk of the numerical work to be performed at any given transferred momentum only once, for a whole extended frequency range. The numerical complexity of the method is thus greatly reduced, making the computation of the loss function over a wide frequency range at any given transferred momentum only slightly more expensive than a single standard ground-state calculation, and opening the way to computations for systems of unprecedented size and complexity. Our method is validated on the paradigmatic examples of bulk silicon and aluminum, for which both experimental and theoretical results already exist in the literature.
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of che mical interests, time-dependent density functional theory (TDDFT) is usually the first choice. However, the lack of wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. The present account aims to analyze the available variants of NAC-TDDFT in a critical but concise manner and meanwhile point out the proper ways for implementation. It can be concluded, from both theoretical and numerical points of view, that the equation of motion-based variant of NAC-TDDFT is the right choice. Possible future developments of this variant are also highlighted.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi tal program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.
Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are co mpared with wavefunction-based methods like the Hartree-Fock approach. Some recent applications of DFT to spin crossover complexes are reviewed, e.g., the calculation of Mossbauer parameters, of vibrational modes and of differences of entropy, vibrational energy, and total electronic energy between high-spin and low-spin isomers.
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent ional ground state DFT simulation, hence is limited to small systems. In this paper, we accelerate hybrid functional rt-TDDFT calculations using the parallel transport gauge formalism, and the GPU implementation on Summit. Our implementation can efficiently scale to 786 GPUs for a large system with 1536 silicon atoms, and the wall clock time is only 1.5 hours per femtosecond. This unprecedented speed enables the simulation of large systems with more than 1000 atoms using rt-TDDFT and hybrid functional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا