ﻻ يوجد ملخص باللغة العربية
We investigate the different large $N$ phases of a generalized Gross-Witten-Wadia $U(N)$ matrix model. The deformation mimics the one-loop determinant of fermion matter with a particular coupling to gauge fields. In one version of the model, the GWW phase transition is smoothed out and it becomes a crossover. In another version, the phase transition occurs along a critical line in the two-dimensional parameter space spanned by the t~Hooft coupling $lambda$ and the Veneziano parameter $tau$. We compute the expectation value of Wilson loops in both phases, showing that the transition is third-order. A calculation of the $beta $ function shows the existence of an IR stable fixed point.
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual
We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1
We study a family of models for an $N_1 times N_2$ matrix worth of Ising spins $S_{aB}$. In the large $N_i$ limit we show that the spins soften, so that the partition function is described by a bosonic matrix integral with a single `spherical constra
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt
We consider gauge theories of non-Abelian $finite$ groups, and discuss the 1+1 dimensional lattice gauge theory of the permutation group $S_N$ as an illustrative example. The partition function at finite $N$ can be written explicitly in a compact for