ﻻ يوجد ملخص باللغة العربية
We employ Momentum-Resolved Electron Energy Loss Spectroscopy (M-EELS) on Bi2.1Sr1.9CaCu2O8+x to resolve the issue of the kink feature in the electron dispersion widely observed in the cuprates. To this end, we utilize the GW approximation to relate the density response function measured in in M-EELS to the self-energy, isolating contributions from phonons, electrons, and the momentum dependence of the effective interaction to the decay rates. The phononic contributions, present in the M-EELS spectra due to electron-phonon coupling, lead to kink features in the corresponding single-particle spectra at energies between 40 meV and 80 meV, independent of the doping level. We find that a repulsive interaction constant in momentum space is able to yield the kink attributed to phonons in ARPES. Hence, our analysis of the M-EELS spectra points to local repulsive interactions as a factor that enhances the spectroscopic signatures of electron-phonon coupling in cuprates. We conclude that the strength of the kink feature in cuprates is determined by the combined action of electron-phonon coupling and electron-electron interactions.
We find that peaks in the autocorrelation of angle resolved photoemission spectroscopy data of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ in the superconducting state show dispersive behavior for binding energies smaller than the maximum superconducting energ
Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topo
We present a Greens function based framework for modeling the scanning tunneling spectrum from the normal as well as the superconducting state of complex materials where the nature of the tunneling process$-$ i.e. the effect of the tunneling matrix e
One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, $chi({bf q},omega)$. The imaginary part, $chi({bf q},omega)$, defines the fundamental bosonic charge excit
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma