ﻻ يوجد ملخص باللغة العربية
In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dimension d. By establishing a bias-variance decomposition of the expected excess risk, we show that, while the bias is (almost) independent of d and monotonically decreases with n, the variance depends on n, d and can be unimodal or monotonically decreasing under different regularization schemes. Our refined analysis goes beyond the double descent theory by showing that, depending on the data eigen-profile and the level of regularization, the kernel regression risk curve can be a double-descent-like, bell-shaped, or monotonic function of n. Experiments on synthetic and real data are conducted to support our theoretical findings.
This article characterizes the exact asymptotics of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$, their dimension $p$, and the dimension of feature space $N$ are all large and comparable. In t
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well. An e
Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad
We develop an approach for feature elimination in statistical learning with kernel machines, based on recursive elimination of features.We present theoretical properties of this method and show that it is uniformly consistent in finding the correct f
Nystrom approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling