ﻻ يوجد ملخص باللغة العربية
Globally coupled ensembles of phase oscillators serve as useful tools for modeling synchronization and collective behavior in a variety of applications. As interest in the effects of simplicial interactions (i.e., non-additive, higher-order interactions between three or more units) continues to grow we study an extension of the Kuramoto model where oscillators are coupled via three-way interactions that exhibits novel dynamical properties including clustering, multistability, and abrupt desynchronization transitions. Here we provide a rigorous description of the stability of various multicluster states by studying their spectral properties in the thermodynamic limit. Not unlike the classical Kuramoto model, a natural frequency distribution with infinite support yields a population of drifting oscillators, which in turn guarantees that a portion of the spectrum is located on the imaginary axes, resulting in neutrally stable or unstable solutions. On the other hand, a natural frequency distribution with finite support allows for a fully phase-locked state, whose spectrum is real and may be linearly stable or unstable.
In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on
We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at op
We study a variant of Kuramoto-Sakaguchi model in which oscillators are divided into two groups, each characterized by its coupling constant and phase lag. Specifically, we consider the case that one coupling constant is positive and the other negati
We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically
Collective behavior plays a key role in the function of a wide range of physical, biological, and neurological systems where empirical evidence has recently uncovered the prevalence of higher-order interactions, i.e., structures that represent intera