ﻻ يوجد ملخص باللغة العربية
We formulate a property strengthening the Disjoint Amalgamation Property and prove that every Fraisse structure in a finite relational language with relation symbols of arity at most two having this property has finite big Ramsey degrees which have a simple characterization. It follows that any such Fraisse structure admits a big Ramsey structure. Furthermore, we prove indivisibility for every Fraisse structure in an arbitrary finite relational language satisfying this property. This work offers a streamlined and unifying approach to Ramsey theory on some seemingly disparate classes of Fraisse structures. Novelties include a new formulation of coding trees in terms of 1-types over initial segments of the Fraisse structure, and a direct characterization of the degrees without appeal to the standard method of envelopes.
Given a countable set S of positive reals, we study finite-dimensional Ramsey-theoretic properties of the countable ultrametric Urysohn space with distances in S.
Building on previous work of the author, for each finite triangle-free graph $mathbf{G}$, we determine the equivalence relation on the copies of $mathbf{G}$ inside the universal homogeneous triangle-free graph, $mathcal{H}_3$, with the smallest numbe
We build a collection of topological Ramsey spaces of trees giving rise to universal inverse limit structures, extending Zhengs work for the profinite graph to the setting of Fra{i}ss{e} classes of finite ordered binary relational structures with the
As a result of 33 intercontinental Zoom calls, we characterise big Ramsey degrees of the generic partial order in a similar way as Devlin characterised big Ramsey degrees of the generic linear order (the order of rationals).
We study Ramsey-theoretic properties of several natural classes of finite ultrametric spaces, describe the corresponding Urysohn spaces and compute a dynamical invariant attached to their isometry groups.