ﻻ يوجد ملخص باللغة العربية
OH absorption is currently the only viable way to detect OH molecules in non-masing galaxies at cosmological distances. There have been only 6 such detections at z>0.05 to date and so it is hard to put a statistically robust constraint on OH column densities in distant galaxies. We carried out a pilot OH absorption survey towards 8 associated and 1 intervening HI 21-cm absorbers using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We were able to constrain the OH abundance relative to HI ([OH]/[HI]) to be lower than 10^-6 ~ 10^-8 for redshifts z within [0.1919, 0.2241]. Although no individual detection was made, stacking three associated absorbers free of RFI provides a sensitive OH column density 3-sigma upper-limit ~ 1.57 x 10^14 (Tx/10K)(1/fc) cm^-2, which corresponds to a [OH]/[HI] < 5.45 x 10^-8. Combining with archival data, we show that associated absorbers have a slightly lower OH abundance than intervening absorbers. Our results are consistent with a trend of decreasing OH abundance with decreasing redshift.
The OH molecule, found abundantly in the Milky Way, has four transitions at the ground state rotational level(J = 3/2) at cm wavelengths. These are E1 transitions between the F+ and F- hyperfine levels of the Lambda doublet of the J=3/2 state. There
We present details of the Automated Radio Telescope Imaging Pipeline (ARTIP) and results of a sensitive blind search for HI and OH absorbers at $z<0.4$ and $z<0.7$, respectively. ARTIP is written in Python 3.6, extensively uses the Common Astronomy S
We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centres previously identified in the Southern Parkes Large-Area
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrog
We report the detection of OH+ and H2O+ in the z=0.89 absorber toward the lensed quasar PKS1830-211. The abundance ratio of OH+ and H2O+ is used to quantify the molecular hydrogen fraction (fH2) and the cosmic-ray ionization rate of atomic hydrogen (