ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Neural Program Synthesis from Multimodal Specifications

234   0   0.0 ( 0 )
 نشر من قبل Xi Ye
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multimodal program synthesis, which leverages different types of user input to synthesize a desired program, is an attractive way to scale program synthesis to challenging settings; however, it requires integrating noisy signals from the user, like natural language, with hard constraints on the programs behavior. This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints while also maximizing the programs score with respect to a neural model. Specifically, we focus on multimodal synthesis tasks in which the user intent is expressed using a combination of natural language (NL) and input-output examples. At the core of our method is a top-down recurrent neural model that places distributions over abstract syntax trees conditioned on the NL input. This model not only allows for efficient search over the space of syntactically valid programs, but it allows us to leverage automated program analysis techniques for pruning the search space based on infeasibility of partial programs with respect to the users constraints. The experimental results on a multimodal synthesis dataset (StructuredRegex) show that our method substantially outperforms prior state-of-the-art techniques in terms of accuracy and efficiency, and finds model-optimal programs more frequently.



قيم البحث

اقرأ أيضاً

126 - M. P. Ward 2001
The FermaT transformation system, based on research carried out over the last sixteen years at Durham University, De Montfort University and Software Migrations Ltd., is an industrial-strength formal transformation engine with many applications in pr ogram comprehension and language migration. This paper is a case study which uses automated plus manually-directed transformations and abstractions to convert an IBM 370 Assembler code program into a very high-level abstract specification.
Synthesizing a program that realizes a logical specification is a classical problem in computer science. We examine a particular type of program synthesis, where the objective is to synthesize a strategy that reacts to a potentially adversarial envir onment while ensuring that all executions satisfy a Linear Temporal Logic (LTL) specification. Unfortunately, exact methods to solve so-called LTL synthesis via logical inference do not scale. In this work, we cast LTL synthesis as an optimization problem. We employ a neural network to learn a Q-function that is then used to guide search, and to construct programs that are subsequently verified for correctness. Our method is unique in combining search with deep learning to realize LTL synthesis. In our experiments the learned Q-function provides effective guidance for synthesis problems with relatively small specifications.
The goal of program synthesis from examples is to find a computer program that is consistent with a given set of input-output examples. Most learning-based approaches try to find a program that satisfies all examples at once. Our work, by contrast, c onsiders an approach that breaks the problem into two stages: (a) find programs that satisfy only one example, and (b) leverage these per-example solutions to yield a program that satisfies all examples. We introduce the Cross Aggregator neural network module based on a multi-head attention mechanism that learns to combine the cues present in these per-example solutions to synthesize a global solution. Evaluation across programs of different lengths and under two different experimental settings reveal that when given the same time budget, our technique significantly improves the success rate over PCCoder arXiv:1809.04682v2 [cs.LG] and other ablation baselines. The code, data and trained models for our work can be found at https://github.com/shrivastavadisha/N-PEPS.
77 - Will Crichton 2019
Program synthesis techniques offer significant new capabilities in searching for programs that satisfy high-level specifications. While synthesis has been thoroughly explored for input/output pair specifications (programming-by-example), this paper a sks: what does program synthesis look like beyond examples? What actual issues in day-to-day development would stand to benefit the most from synthesis? How can a human-centric perspective inform the exploration of alternative specification languages for synthesis? I sketch a human-centric vision for program synthesis where programmers explore and learn languages and APIs aided by a synthesis tool.
We present a neurosymbolic framework for the lifelong learning of algorithmic tasks that mix perception and procedural reasoning. Reusing high-level concepts across domains and learning complex procedures are key challenges in lifelong learning. We s how that a program synthesis approach that combines gradient descent with combinatorial search over programs can be a more effective response to these challenges than purely neural methods. Our framework, called HOUDINI, represents neural networks as strongly typed, differentiable functional programs that use symbolic higher-order combinators to compose a library of neural functions. Our learning algorithm consists of: (1) a symbolic program synthesizer that performs a type-directed search over parameterized programs, and decides on the library functions to reuse, and the architectures to combine them, while learning a sequence of tasks; and (2) a neural module that trains these programs using stochastic gradient descent. We evaluate HOUDINI on three benchmarks that combine perception with the algorithmic tasks of counting, summing, and shortest-path computation. Our experiments show that HOUDINI transfers high-level concepts more effectively than traditional transfer learning and progressive neural networks, and that the typed representation of networks significantly accelerates the search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا