ترغب بنشر مسار تعليمي؟ اضغط هنا

Inquisitive Question Generation for High Level Text Comprehension

151   0   0.0 ( 0 )
 نشر من قبل Wei-Jen Ko
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inquisitive probing questions come naturally to humans in a variety of settings, but is a challenging task for automatic systems. One natural type of question to ask tries to fill a gap in knowledge during text comprehension, like reading a news article: we might ask about background information, deeper reasons behind things occurring, or more. Despite recent progress with data-driven approaches, generating such questions is beyond the range of models trained on existing datasets. We introduce INQUISITIVE, a dataset of ~19K questions that are elicited while a person is reading through a document. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. We show that readers engage in a series of pragmatic strategies to seek information. Finally, we evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions although the task is challenging, and highlight the importance of context to generate INQUISITIVE questions.



قيم البحث

اقرأ أيضاً

We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. I n contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
96 - Qingyu Zhou , Nan Yang , Furu Wei 2017
Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into re lated questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions.
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
Generating long and coherent text is an important but challenging task, particularly for open-ended language generation tasks such as story generation. Despite the success in modeling intra-sentence coherence, existing generation models (e.g., BART) still struggle to maintain a coherent event sequence throughout the generated text. We conjecture that this is because of the difficulty for the decoder to capture the high-level semantics and discourse structures in the context beyond token-level co-occurrence. In this paper, we propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process. To this end, we propose two pretraining objectives to learn the representations by predicting inter-sentence semantic similarity and distinguishing between normal and shuffled sentence orders. Extensive experiments show that our model can generate more coherent texts than state-of-the-art baselines.
Current pre-trained language models have lots of knowledge, but a more limited ability to use that knowledge. Blooms Taxonomy helps educators teach children how to use knowledge by categorizing comprehension skills, so we use it to analyze and improv e the comprehension skills of large pre-trained language models. Our experiments focus on zero-shot question answering, using the taxonomy to provide proximal context that helps the model answer questions by being relevant to those questions. We show targeting context in this manner improves performance across 4 popular common sense question answer datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا