Second order relativistic viscous hydrodynamics within an effective description of hot QCD medium


الملخص بالإنكليزية

The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parameter in the equilibrium distribution function leads to a mean field term in the Boltzmann equation which affects the interactions in the hot QCD matter. The viscous corrections to distribution function, up to second-order in gradient expansion, have been obtained by employing a Chapman-Enskog like iterative solution of the effective Boltzmann equation within the relaxation time approximation. The effect of mean field contributions to transport coefficients as well as entropy current has been studied up to second-order in gradients. In contrast to the previous calculations, we find non-vanishing entropy flux at second order. The effective description of relativistic second-order viscous hydrodynamics, for a system of interacting quarks and gluons, has been quantitatively analyzed in the case of the $1+1-$dimensional boost invariant longitudinal expansion. We study the proper time evolution of temperature, pressure anisotropy, and viscous corrections to entropy density for this simplified expansion. The second order evolution of quark-gluon plasma is seen to be affected significantly with the inclusion of mean field contributions and the realistic equation of state.

تحميل البحث