ﻻ يوجد ملخص باللغة العربية
We report a soft x-ray resonant magnetic scattering study of the spin configuration in multiferroic thin films of Co$_{0.975}$Ge$_{0.025}$Cr$_2$O$_4$ (Ge-CCO) and CoCr$_2$O$_4$ (CCO), under low- and high-magnetic fields, from 0.2 T up to 6.5 T. A characterization of Ge-CCO at a low magnetic field is performed and the results are compared to those of pure CCO. The ferrimagnetic phase transition temperature $T_C approx 95$ K and the multiferroic transition temperature $T_S approx 27$ K in Ge-CCO are comparable to those observed in CCO. In Ge-CCO, the ordering wave vector $textit{(qq0)}$ observed below $T_S$ is slightly larger compared to that of CCO, and, unlike CCO, the diffraction intensity consists of two contributions that show a dissimilar x-ray polarization dependence. In Ge-CCO, the coercive field observed at low temperatures was larger than the one reported for CCO. In both compounds, an unexpected reversal of the spiral helicity and therefore the electric polarization was observed on simply magnetic field cooling. In addition, we find a change in the helicity as a function of momentum transfer in the magnetic diffraction peak of Ge-CCO, indicative of the presence of multiple magnetic spirals.
We study $S=1/2$ dimer excitation in a coupled chain and dimer compound Cu$_2$Fe$_2$Ge$_4$O$_{13} by inelastic neutron scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase
Cu$_2$Fe$_2$Ge$_4$O$_{13}$ is a bicomponent compound that consists of Cu dimers and Fe chains with separate energy scale. By inelastic neutron scattering technique with high-energy resolution we observed the indirect Fe - Fe exchange coupling by way
We report the results of a $^{45}$Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu$_2$Sc$_2$Ge$_4$O$_{13}$ at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications
Magnetoelectric materials have generated wide technological and scientific interest because of the rich phenomena these materials exhibit, including the coexistence of magnetic and ferroelectric orders, magnetodielectric behavior, and exotic hybrid e
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu$_2$Fe$_2$Ge$_4$O$_{13}$ are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms o