ﻻ يوجد ملخص باللغة العربية
We investigate the possibility that the low mass companion of the black hole in the source of GW190814 was a strange quark star. This possibility is viable within the so-called two-families scenario in which neutron stars and strange quark stars coexist. Strange quark stars can reach the mass range indicated by GW190814, $Msim (2.5-2.67) M_odot$ due to a large value of the adiabatic index, without the need for a velocity of sound close to the causal limit. Neutron stars (actually hyperonic stars in the two-families scenario) can instead fulfill the presently available astrophysical and nuclear physics constraints which require a softer equation of state. In this scheme it is possible to satisfy both the request of very large stellar masses and of small radii while using totally realistic and physically motivated equations of state. Moreover it is possible to get a radius for a 1.4 $M_odot$ star of the order or less than 11 km, which is impossible if only one family of compact stars exists.
The interface effects play important roles for the properties of strange quark matter (SQM) and the related physical processes. We show several examples on the implications of interface effects for both stable and unstable SQM. Based on an equivparti
The secondary component of GW190814 with a mass of 2.50-2.67 $M_{odot}$ may be the lightest black hole or the heaviest neutron star ever observed in a binary compact object system. To explore the possible equation of state (EOS), which can support su
Gravitational waves provide a window to probe general relativity (GR) under extreme conditions. The recent observations of GW190412 and GW190814 are unique high-mass-ratio mergers that enable the observation of gravitational-wave harmonics beyond the
The effect of strange interactions in neutron star matter and the role of the strange meson-hyperon couplings are studied in a relativistic quark model where the confining interaction for quarks inside a baryon is represented by a phenomenological av
All stellar mass black holes have hitherto been identified by X-rays emitted by gas that is accreting onto the black hole from a companion star. These systems are all binaries with black holes below 30 M$_{odot}$$^{1-4}$. Theory predicts, however, th