ﻻ يوجد ملخص باللغة العربية
A generalized two-dimensional quaternion principal component analysis (G2DQPCA) approach with weighting is presented for color image analysis. As a general framework of 2DQPCA, G2DQPCA is flexible to adapt different constraints or requirements by imposing $L_{p}$ norms both on the constraint function and the objective function. The gradient operator of quaternion vector functions is redefined by the structure-preserving gradient operator of real vector function. Under the framework of minorization-maximization (MM), an iterative algorithm is developed to obtain the optimal closed-form solution of G2DQPCA. The projection vectors generated by the deflating scheme are required to be orthogonal to each other. A weighting matrix is defined to magnify the effect of main features. The weighted projection bases remain the accuracy of face recognition unchanged or moving in a tight range as the number of features increases. The numerical results based on the real face databases validate that the newly proposed method performs better than the state-of-the-art algorithms.
A sample-relaxed two-dimensional color principal component analysis (SR-2DCPCA) approach is presented for face recognition and image reconstruction based on quaternion models. A relaxation vector is automatically generated according to the variances
The two-dimensional principal component analysis (2DPCA) has become one of the most powerful tools of artificial intelligent algorithms. In this paper, we review 2DPCA and its variations, and propose a general ridge regression model to extract featur
A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-$L_1$ and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxat
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal componen
We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model whe