ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Separation Between Convolutional and Fully-Connected Networks

91   0   0.0 ( 0 )
 نشر من قبل Eran Malach
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNN) exhibit unmatched performance in a multitude of computer vision tasks. However, the advantage of using convolutional networks over fully-connected networks is not understood from a theoretical perspective. In this work, we show how convolutional networks can leverage locality in the data, and thus achieve a computational advantage over fully-connected networks. Specifically, we show a class of problems that can be efficiently solved using convolutional networks trained with gradient-descent, but at the same time is hard to learn using a polynomial-size fully-connected network.



قيم البحث

اقرأ أيضاً

Convolutional neural networks often dominate fully-connected counterparts in generalization performance, especially on image classification tasks. This is often explained in terms of better inductive bias. However, this has not been made mathematical ly rigorous, and the hurdle is that the fully connected net can always simulate the convolutional net (for a fixed task). Thus the training algorithm plays a role. The current work describes a natural task on which a provable sample complexity gap can be shown, for standard training algorithms. We construct a single natural distribution on $mathbb{R}^dtimes{pm 1}$ on which any orthogonal-invariant algorithm (i.e. fully-connected networks trained with most gradient-based methods from gaussian initialization) requires $Omega(d^2)$ samples to generalize while $O(1)$ samples suffice for convolutional architectures. Furthermore, we demonstrate a single target function, learning which on all possible distributions leads to an $O(1)$ vs $Omega(d^2/varepsilon)$ gap. The proof relies on the fact that SGD on fully-connected network is orthogonal equivariant. Similar results are achieved for $ell_2$ regression and adaptive training algorithms, e.g. Adam and AdaGrad, which are only permutation equivariant.
282 - Jianjie Lu , Kai-yu Tong 2019
Many image processing tasks involve image-to-image mapping, which can be addressed well by fully convolutional networks (FCN) without any heavy preprocessing. Although empirically designing and training FCNs can achieve satisfactory results, reasons for the improvement in performance are slightly ambiguous. Our study is to make progress in understanding their generalization abilities through visualizing the optimization landscapes. The visualization of objective functions is obtained by choosing a solution and projecting its vicinity onto a 3D space. We compare three FCN-based networks (two existing models and a new proposed in this paper for comparison) on multiple datasets. It has been observed in practice that the connections from the pre-pooled feature maps to the post-upsampled can achieve better results. We investigate the cause and provide experiments to shows that the skip-layer connections in FCN can promote flat optimization landscape, which is well known to generalize better. Additionally, we explore the relationship between the models generalization ability and loss surface under different batch sizes. Results show that large-batch training makes the model converge to sharp minimizers with chaotic vicinities while small-batch method leads the model to flat minimizers with smooth and nearly convex regions. Our work may contribute to insights and analysis for designing and training FCNs.
Pruning methods can considerably reduce the size of artificial neural networks without harming their performance. In some cases, they can even uncover sub-networks that, when trained in isolation, match or surpass the test accuracy of their dense cou nterparts. Here we study the inductive bias that pruning imprints in such winning lottery tickets. Focusing on visual tasks, we analyze the architecture resulting from iterative magnitude pruning of a simple fully connected network (FCN). We show that the surviving node connectivity is local in input space, and organized in patterns reminiscent of the ones found in convolutional networks (CNN). We investigate the role played by data and tasks in shaping the architecture of pruned sub-networks. Our results show that the winning lottery tickets of FCNs display the key features of CNNs. The ability of such automatic network-simplifying procedure to recover the key features hand-crafted in the design of CNNs suggests interesting applications to other datasets and tasks, in order to discover new and efficient architectural inductive biases.
Convolutional architectures have recently been shown to be competitive on many sequence modelling tasks when compared to the de-facto standard of recurrent neural networks (RNNs), while providing computational and modeling advantages due to inherent parallelism. However, currently there remains a performance gap to more expressive stochastic RNN variants, especially those with several layers of dependent random variables. In this work, we propose stochastic temporal convolutional networks (STCNs), a novel architecture that combines the computational advantages of temporal convolutional networks (TCN) with the representational power and robustness of stochastic latent spaces. In particular, we propose a hierarchy of stochastic latent variables that captures temporal dependencies at different time-scales. The architecture is modular and flexible due to the decoupling of the deterministic and stochastic layers. We show that the proposed architecture achieves state of the art log-likelihoods across several tasks. Finally, the model is capable of predicting high-quality synthetic samples over a long-range temporal horizon in modeling of handwritten text.
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an excitin g alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the Pubmed dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا