ﻻ يوجد ملخص باللغة العربية
To rapidly learn a new task, it is often essential for agents to explore efficiently -- especially when performance matters from the first timestep. One way to learn such behaviour is via meta-learning. Many existing methods however rely on dense rewards for meta-training, and can fail catastrophically if the rewards are sparse. Without a suitable reward signal, the need for exploration during meta-training is exacerbated. To address this, we propose HyperX, which uses novel reward bonuses for meta-training to explore in approximate hyper-state space (where hyper-states represent the environment state and the agents task belief). We show empirically that HyperX meta-learns better task-exploration and adapts more successfully to new tasks than existing methods.
The goal of meta-reinforcement learning (meta-RL) is to build agents that can quickly learn new tasks by leveraging prior experience on related tasks. Learning a new task often requires both exploring to gather task-relevant information and exploitin
A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an - adjust
In this paper, we propose a novel meta-learning method in a reinforcement learning setting, based on evolution strategies (ES), exploration in parameter space and deterministic policy gradients. ES methods are easy to parallelize, which is desirable
The goal of reinforcement learning algorithms is to estimate and/or optimise the value function. However, unlike supervised learning, no teacher or oracle is available to provide the true value function. Instead, the majority of reinforcement learnin
This paper investigates whether learning contingency-awareness and controllable aspects of an environment can lead to better exploration in reinforcement learning. To investigate this question, we consider an instantiation of this hypothesis evaluate