ترغب بنشر مسار تعليمي؟ اضغط هنا

Preventing crash in stock market: The role of economic policy uncertainty during COVID-19

107   0   0.0 ( 0 )
 نشر من قبل Peng-Fei Dai
 تاريخ النشر 2020
  مجال البحث مالية اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the impact of economic policy uncertainty (EPU) on the crash risk of US stock market during the COVID-19 pandemic. To this end, we use the GARCH-S (GARCH with skewness) model to estimate daily skewness as a proxy for the stock market crash risk. The empirical results show the significantly negative correlation between EPU and stock market crash risk, indicating the aggravation of EPU increase the crash risk. Moreover, the negative correlation gets stronger after the global COVID-19 outbreak, which shows the crash risk of the US stock market will be more affected by EPU during the pandemic.



قيم البحث

اقرأ أيضاً

This study investigates the impact of the COVID-19 pandemic on the stock market crash risk in China. For this purpose, we first estimated the conditional skewness of the return distribution from a GARCH with skewness (GARCH-S) model as the proxy for the equity market crash risk of the Shanghai Stock Exchange. We then constructed a fear index for COVID-19 using data from the Baidu Index. Based on the findings, conditional skewness reacts negatively to daily growth in total confirmed cases, indicating that the pandemic increases stock market crash risk. Moreover, the fear sentiment exacerbates such risk, especially with regard to the impact of COVID-19. In other words, when the fear sentiment is high, the stock market crash risk is more strongly affected by the pandemic. Our evidence is robust for the number of daily deaths and global cases.
The aim of this study is to investigate quantitatively whether share prices deviated from company fundamentals in the stock market crash of 2008. For this purpose, we use a large database containing the balance sheets and share prices of 7,796 worldw ide companies for the period 2004 through 2013. We develop a panel regression model using three financial indicators--dividends per share, cash flow per share, and book value per share--as explanatory variables for share price. We then estimate individual company fundamentals for each year by removing the time fixed effects from the two-way fixed effects model, which we identified as the best of the panel regression models. One merit of our model is that we are able to extract unobservable factors of company fundamentals by using the individual fixed effects. Based on these results, we analyze the market anomaly quantitatively using the divergence rate--the rate of the deviation of share price from a companys fundamentals. We find that share prices on average were overvalued in the period from 2005 to 2007, and were undervalued significantly in 2008, when the global financial crisis occurred. Share prices were equivalent to the fundamentals on average in the subsequent period. Our empirical results clearly demonstrate that the worldwide stock market fluctuated excessively in the time period before and just after the global financial crisis of 2008.
Low inflation was once a welcome to both policy makers and the public. However, Japans experience during the 1990s changed the consensus view on price of economists and central banks around the world. Facing deflation and zero interest bound at the s ame time, Bank of Japan had difficulty in conducting effective monetary policy. It made Japans stagnation unusually prolonged. Too low inflation which annoys central banks today is translated into the Phillips curve puzzle. In the US and Japan, in the course of recovery from the Great Recession after the 2008 global financial crisis, the unemployment rate had steadily declined to the level which was commonly regarded as lower than the natural rate or NAIRU. And yet, inflation stayed low. In this paper, we consider a minimal model of dual labor market to explore what kind of change in the economy makes the Phillips curve flat. The level of bargaining power of workers, the elasticity of the supply of labor to wage in the secondary market, and the composition of the workforce are the main factors in explaining the flattening of the Phillips curve. We argue that the changes we consider in the model, in fact, has plausibly made the Phillips curve flat in recent years.
We study the disproportionate impact of the lockdown as a result of the COVID-19 outbreak on female and male academics research productivity in social science. The lockdown has caused substantial disruptions to academic activities, requiring people t o work from home. How this disruption affects productivity and the related gender equity is an important operations and societal question. We collect data from the largest open-access preprint repository for social science on 41,858 research preprints in 18 disciplines produced by 76,832 authors across 25 countries over a span of two years. We use a difference-in-differences approach leveraging the exogenous pandemic shock. Our results indicate that, in the 10 weeks after the lockdown in the United States, although the total research productivity increased by 35%, female academics productivity dropped by 13.9% relative to that of male academics. We also show that several disciplines drive such gender inequality. Finally, we find that this intensified productivity gap is more pronounced for academics in top-ranked universities, and the effect exists in six other countries. Our work points out the fairness issue in productivity caused by the lockdown, a finding that universities will find helpful when evaluating faculty productivity. It also helps organizations realize the potential unintended consequences that can arise from telecommuting.
Recent advances in the fields of machine learning and neurofinance have yielded new exciting research perspectives in practical inference of behavioural economy in financial markets and microstructure study. We here present the latest results from a recently published stock market simulator built around a multi-agent system architecture, in which each agent is an autonomous investor trading stocks by reinforcement learning (RL) via a centralised double-auction limit order book. The RL framework allows for the implementation of specific behavioural and cognitive traits known to trader psychology, and thus to study the impact of these traits on the whole stock market at the mesoscale. More precisely, we narrowed our agent design to three such psychological biases known to have a direct correspondence with RL theory, namely delay discounting, greed, and fear. We compared ensuing simulated data to real stock market data over the past decade or so, and find that market stability benefits from larger populations of agents prone to delay discounting and most astonishingly, to greed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا