ﻻ يوجد ملخص باللغة العربية
Long-Term visual localization under changing environments is a challenging problem in autonomous driving and mobile robotics due to season, illumination variance, etc. Image retrieval for localization is an efficient and effective solution to the problem. In this paper, we propose a novel multi-task architecture to fuse the geometric and semantic information into the multi-scale latent embedding representation for visual place recognition. To use the high-quality ground truths without any human effort, the effective multi-scale feature discriminator is proposed for adversarial training to achieve the domain adaptation from synthetic virtual KITTI dataset to real-world KITTI dataset. The proposed approach is validated on the Extended CMU-Seasons dataset and Oxford RobotCar dataset through a series of crucial comparison experiments, where our performance outperforms state-of-the-art baselines for retrieval-based localization and large-scale place recognition under the challenging environment.
In this paper, we consider the problem of unsupervised domain adaptation in the semantic segmentation. There are two primary issues in this field, i.e., what and how to transfer domain knowledge across two domains. Existing methods mainly focus on ad
Unsupervised domain adaptation (UDA) is important for applications where large scale annotation of representative data is challenging. For semantic segmentation in particular, it helps deploy on real target domain data models that are trained on anno
Unsupervised domain adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain. Existing self-training based UDA approaches assign pseudo labels for target data and treat them as ground truth labels
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain. A mainstream of DA methods is to align the feature distributions of
Image dehazing using learning-based methods has achieved state-of-the-art performance in recent years. However, most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to d