ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductor-insulator transition induced by pressure within the X-boson approach

119   0   0.0 ( 0 )
 نشر من قبل Lizardo H. C. M. Nunes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pressure induced superconducting phase diagram is calculated for an extension of the periodic Anderson model (PAM) in the $ U = infty $ limit taking into account the effect of a nearest neighbor attractive interaction between f-electrons. We analyze the role of the chemical potential compared to several plots of the f-band density of states and we also found a superconductor-insulator transition induced by pressure when the chemical potential crosses the hybridization gap.



قيم البحث

اقرأ أيضاً

A unique property of a dynamically generated quantum spin Hall state are Goldstone modes that correspond to the long-wavelength fluctuations of the spin-orbit coupling order parameter whose topological Skyrmion excitations carry charge 2$e$. Within t he model considered here, upon varying the chemical potential, we observe two transitions: An s-wave superconducting order parameter develops at a critical chemical potential $mu_{c1}$, corresponding to the excitation gap of pairs of fermions, and at $mu_{c2}$ the SO(3) order parameter of the quantum spin Hall state vanishes. Using negative-sign-free, large-scale quantum Monte Carlo simulations, we show that $mu_{c1}=mu_{c2}$ within our accuracy -- we can resolve dopings away from half filling down to $delta = 0.0017$. The length scale associated with the fluctuations of the quantum spin Hall order parameter grows down to our lowest doping, suggesting either a continuous or a weakly first-order transition. Contrary to mean-field expectations, the doping versus chemical potential curve is not linear, indicating a dynamical critical exponent $z > 2$ if the transition is continuous.
We show that the quasi-skutterudite superconductor Sr_3Ir_4Sn_{13} undergoes a structural transition from a simple cubic parent structure, the I-phase, to a superlattice variant, the I-phase, which has a lattice parameter twice that of the high tempe rature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T* can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.
Low temperature ac magnetic susceptibility measurements of the coexistent antiferromagnetic superconductor YbPd2Sn have been made in hydrostatic pressures < 74 kbar in moissanite anvil cells. The superconducting transition temperature is forced to T( SC) = 0 K at a pressure of 58 kbar. The initial suppression of the superconducting transition temperature is corroborated by lower hydrostatic pressure (p < 16 kbar) four point resisitivity measurements, made in a piston cylinder pressure cell. At ambient pressure, in a modest magnetic field of ~ 500 G, this compound displays reentrant superconducting behaviour. This reentrant superconductivity is suppressed to lower temperature and lower magnetic field as pressure is increased. The antiferromagnetic ordering temperature, which was measured at T(N) = 0.12 K at ambient pressure is enhanced, to reach T(N) = 0.58 K at p = 74 kbar. The reasons for the coexistence of superconductivity and antiferromagnetism is discussed in the light of these and previous findings. Also considered is why superconductivity on the border of long range magnetic order is so much rarer in Yb compounds than in Ce compounds. The presence of a new transition visible by ac magnetic susceptibility under pressure and in magnetic fields greater than 1.5 kG is suggested.
We performed the DC-magnetization and neutron scattering experiments under pressure {it P} for a pressure-induced superconductor UGe$_2$. We found that the magnetic moment is enhanced at a characteristic temperature {it T}$^{*}$ in the ferromagnetic state, where {it T}$^{*}$ is smaller than a Curie temperature {it T}$_{rm C}$. This enhancement becomes remarkable in the vicinity of {it P}$_{rm C}^{*}$ = 1.20 GPa, where {it T}$^{*}$ becomes 0 K and the superconducting transition temperature {it T}$_{rm SC}$ shows a maximum. The characteristic temperature {it T}$^{*}$, which decreases with increasing pressure, also depends on the magnetic field.
A magnetic-field-driven transition from metallic- to semiconducting-type behavior in the basal-plane resistance takes place in highly oriented pyrolytic graphite at a field $H_c sim 1~$kOe applied along the hexagonal c-axis. The analysis of the data reveals a striking similarity between this transition and that measured in thin-film superconductors and Si MOSFETs. However, in contrast to those materials, the transition in graphite is observable at almost two orders of magnitude higher temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا