ﻻ يوجد ملخص باللغة العربية
In this letter, we discuss certain universal predictions of the large charge expansion in conformal field theories with $U(1)$ symmetry, mainly focusing on four-dimensional theories. We show that, while in three dimensions quantum fluctuations are responsible for the existence of a theory-independent $Q^0$ term in the scaling dimension $Delta_Q$ of the lightest operator with fixed charge $Qgg 1$, in four dimensions the same mechanism provides a universal $Q^0log Q$ correction to $Delta_Q$. Previous works discussing four-dimensional theories failed in identifying this term. We also compute the first subleading correction to the OPE coefficient corresponding to the insertion of an arbitrary primary operator with small charge $qll Q$ in between the minimal energy states with charge $Q$ and $Q+q$, both in three and four dimensions. This contribution does not depend on the operator insertion and, similarly to the quantum effects in $Delta_Q$, in four dimensions it scales logarithmically with $Q$.
In arXiv:1909.01269 it was shown that the scaling dimension of the lightest charge $n$ operator in the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$ can be computed semiclassically for arbitrary values of $lambda n$, where $lambda
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. W
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda
We study the spectrum and OPE coefficients of the three-dimensional critical O(2) model, using four-point functions of the leading scalars with charges 0, 1, and 2 ($s$, $phi$, and $t$). We obtain numerical predictions for low-twist OPE data in sever