ﻻ يوجد ملخص باللغة العربية
We show that every finite-dimensional quantum system with Markovian time evolution has an autonomous unitary dilation which can be dynamically decoupled. Since there is also always an autonomous unitary dilation which cannot be dynamically decoupled, this highlights the role of dilations in the control of quantum noise. We construct our dilation via a time-dependent version of Stinespring in combination with Howlands clock Hamiltonian and certain point-localised states, which may be regarded as a C*-algebraic analogue of improper bra-ket position eigenstates and which are hence of independent mathematical and physical interest.
Linearity of a dynamical entropy means that the dynamical entropy of the n-fold composition of a dynamical map with itself is equal to n times the dynamical entropy of the map for every positive integer n. We show that the quantum dynamical entropy i
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$
Within the framework of the Accardi-Fagnola-Quaegebeur (AFQ) representation free calculus of cite{b}, we consider the problem of controlling the size of a quantum stochastic flow generated by a unitary stochastic evolution affected by quantum noise.
We study the entropy of pure shift-invariant states on a quantum spin chain. Unlike the classical case, the local restrictions to intervals of length $N$ are typically mixed and have therefore a non-zero entropy $S_N$ which is, moreover, monotonicall
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models