Robin double-phase problems with singular and superlinear terms


الملخص بالإنكليزية

We consider a nonlinear Robin problem driven by the sum of $p$-Laplacian and $q$-Laplacian (i.e. the $(p,q)$-equation). In the reaction there are competing effects of a singular term and a parametric perturbation $lambda f(z,x)$, which is Caratheodory and $(p-1)$-superlinear at $xinmathbb{R},$ without satisfying the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter $lambda>0$ varies.

تحميل البحث