ﻻ يوجد ملخص باللغة العربية
We introduce the notion of twisted gravitating vortex on a compact Riemann surface. If the genus of the Riemann surface is greater than 1 and the twisting forms have suitable signs, we prove an existence and uniqueness result for suitable range of the coupling constant generalizing the result of arXiv:1510.03810v2 in the non twisted setting. It is proved via solving a continuity path deforming the coupling constant from 0 for which the system decouples as twisted Kahler-Einstein metric and twisted vortices. Moreover, specializing to a family of twisting forms smoothing delta distribution terms, we prove the existence of singular gravitating vortices whose Kahler metric has conical singularities and Hermitian metric has parabolic singularities. In the Bogomolnyi phase, we establish an existence result for singular Einstein-Bogomolnyi equations, which represents cosmic strings with singularities.
We give a complete solution to the existence problem for gravitating vortices with non-negative topological constant $c geqslant 0$. Our first main result builds on previous results by Yang and establishes the existence of solutions to the Einstein-B
In this paper, we develop results in the direction of an analogue of Sjamaar and Lermans singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman).
We introduce a wide category of superspaces, called locally finitely generated, which properly includes supermanifolds but enjoys much stronger permanence properties, as are prompted by applications. Namely, it is closed under taking finite fibre pro
A differential 1-form $alpha$ on a manifold of odd dimension $2n+1$, which satisfies the contact condition $alpha wedge (dalpha)^n eq 0$ almost everywhere, but which vanishes at a point $O$, i.e. $alpha (O) = 0$, is called a textit{singular contact
Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-self-gravitating disks. The main goal here is to examine the effects of d