ﻻ يوجد ملخص باللغة العربية
We present the results of cosmological simulations of large-scale structure formation with massive neutrinos. The phase-space distribution of the cosmic relic neutrinos is followed, for the first time, by directly integrating the six-dimensional Vlasov-Poisson equations. Our novel approach allows us to represent free streaming and clustering of neutrinos, and their gravitational interaction with cold dark matter accurately. We thus obtain solutions for the collisionless dynamics independent of conventional N-body methods. We perform a suite of hybrid N-body/Vlasov simulations with varying the neutrino mass, and systematically examine the dynamical effects of massive neutrinos on large-scale structure formation. Our simulations show characteristic large-scale clustering of the neutrinos and their coherent streaming motions relative to dark matter. The effective local neutrino temperature around massive galaxy clusters varies by several percent with respect to the cosmic mean; the neutrinos in clusters can be hotter or colder depending on the neutrino mass. We study a number of statistics of the large-scale structure and of dark matter halos in comparison with those obtained by N-body simulations and/or by perturbation theory. Our simulations mark an important milestone in numerical cosmology, and pave a new way to study cosmic structure formation with massive neutrinos.
We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to el
Light but massive cosmological neutrinos do not cluster significantly on small scales, due to their high thermal velocities. With finite masses, cosmological neutrinos become part of the total matter field and contribute to its smoothing. Structure f
The standard model of cosmology predicts the existence of cosmic neutrino background in the present Universe. To detect cosmic relic neutrinos in the vicinity of the Earth, it is necessary to evaluate the gravitational clustering effects on relic neu
We employ cosmological hydrodynamical simulations to study the growth of massive black holes (BHs) at high redshifts subject to BH merger recoils from gravitational wave emission. We select the most massive dark matter halo at z=6 from the Millennium
We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with coupli