ﻻ يوجد ملخص باللغة العربية
Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such re
The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representat
Building equitable and inclusive NLP technologies demands consideration of whether and how social attitudes are represented in ML models. In particular, representations encoded in models often inadvertently perpetuate undesirable social biases from t
Recent work has indicated that many natural language understanding and reasoning datasets contain statistical cues that may be taken advantaged of by NLP models whose capability may thus be grossly overestimated. To discover the potential weakness in
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens