ﻻ يوجد ملخص باللغة العربية
We present a study of the IR behaviour of a three-dimensional super-renormalisable quantum field theory (QFT) consisting of a scalar field in the adjoint of $SU(N)$ with a $varphi^4$ interaction. A bare mass is required for the theory to be massless at the quantum level. In perturbation theory the critical mass is ambiguous due to infrared (IR) divergences and we indeed find that at two-loops in lattice perturbation theory the critical mass diverges logarithmically. It was conjectured long ago in [Jackiw 1980, Appelquist 1981] that super-renormalisable theories are nonperturbatively IR finite, with the coupling constant playing the role of an IR regulator. Using a combination of Markov-Chain-Monte-Carlo simulations of the lattice-regularised theory, both frequentist and Bayesian data analysis, and considerations of a corresponding effective theory we gather evidence that this is indeed the case.
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD and emphasize the need for new methods to deal with finite-density and real-time evolution. We show that these lattice mod
Models explaining dark matter typically include interactions with charged scalar and fermion fields. The Infra-Red (IR) finiteness of thermal field theories of charged fermions (fermionic QED) has been proven to all orders in perturbation theory. Her
We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equ
High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter in
We introduce the simplest minimal subtraction method for massive $lambda phi^{4}$ field theory with $O(N)$ internal symmetry, which resembles the same method applied to massless fields by using two steps. First, the utilization of the partial-$p$ ope