ﻻ يوجد ملخص باللغة العربية
A nonperturbative determination of the energy-momentum tensor is essential for understanding the physics of strongly coupled systems. The ability of the Wilson flow to eliminate divergent contact terms makes it a practical method for renormalizing the energy-momentum tensor on the lattice. In this paper, we utilize the Wilson flow to define a procedure to renormalize the energy-momentum tensor for a three-dimensional massless scalar field in the adjoint of $SU(N)$ with a $varphi^4$ interaction on the lattice. In this theory the energy-momentum tensor can mix with $varphi^2$ and we present numerical results for the mixing coefficient for the $N=2$ theory.
The non-perturbative computation of the energy-momentum tensor can be used to study the scaling behaviour of strongly coupled quantum field theories. The Wilson flow is an essential tool to find a meaningful formulation of the energy-momentum tensor
We employ a new strategy for a non perturbative determination of the renormalized energy momentum tensor. The strategy is based on the definition of suitable lattice Ward identities probed by observables computed along the gradient flow. The new set
The energy density and the pressure of SU(3) gauge theory at finite temperature are studied by direct lattice measurements of the renormalized energy-momentum tensor obtained by the gradient flow. Numerical analyses are carried out with $beta=6.287$-
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete
Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are s