ﻻ يوجد ملخص باللغة العربية
We investigate sustenance and dependence on magnetic Prandtl number (${rm Pm}$) for magnetorotational instability (MRI)-driven turbulence in astrophysical Keplerian disks with zero net magnetic flux using standard shearing box simulations. We focus on the turbulence dynamics in Fourier space, capturing specific/noncanonical anisotropy of nonlinear processes due to disk flow shear. This is a new type of nonlinear redistribution of modes over wavevector orientations in Fourier space -- the nonlinear transverse cascade -- which is generic to shear flows and fundamentally different from usual direct/inverse cascade. The zero flux MRI has no exponentially growing modes, so its growth is transient, or nonmodal. Turbulence self-sustenance is governed by constructive cooperation of the transient growth of MRI and the nonlinear transverse cascade. This cooperation takes place at small wavenumbers (on the flow size scales) referred to as the vital area in Fourier space. The direct cascade transfers mode energy from the vital area to larger wavenumbers. At large ${rm Pm}$, the transverse cascade prevails over the direct one, keeping most of modes energy contained in small wavenumbers. With decreasing ${rm Pm}$, however, the action of the transverse cascade weakens and can no longer oppose the action of direct cascade which more efficiently transfers energy to higher wavenumbers, leading to increased resistive dissipation. This undermines the sustenance scheme, resulting in the turbulence decay. Thus, the decay of zero net flux MRI-turbulence with decreasing ${rm Pm}$ is attributed to topological rearrangement of the nonlinear processes when the direct cascade begins to prevail over the transverse cascade.
We studied dynamical balances in magnetorotational instability (MRI) turbulence with a net vertical field in the shearing box model of disks. Analyzing the turbulence dynamics in Fourier (${bf k}$-)space, we identified three types of active modes tha
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhance
(abriged) MRI turbulence is a leading mechanism for the generation of an efficient turbulent transport of angular momentum in an accretion disk through a turbulent viscosity effect. It is believed that the same process could also transport large-scal
Accreting supermassive binary black holes (SMBBHs) are potential multi-messenger sources because they emit both gravitational wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymme
In their early stages, protoplanetary discs are sufficiently massive to undergo gravitational instability (GI). This instability is thought to be involved in mass accretion, planet formation via gas fragmentation, the generation of spiral density wav