ترغب بنشر مسار تعليمي؟ اضغط هنا

Fe XII and Fe XIII Line Widths in the Polar Off-limb Solar Corona up to 1.5 Rsun

104   0   0.0 ( 0 )
 نشر من قبل Yingjie Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonthermal broadening of spectral lines formed in the solar corona is often used to seek the evidence of Alfven waves propagating in the corona. To have a better understanding of the variation of line widths at different altitudes, we measured the line widths of the strong Fe textsc{xii} 192.4, 193.5, and 195.1 mbox{AA} and Fe textsc{xiii} 202.0 mbox{AA} in an off-limb southern coronal hole up to 1.5 $R_odot$ observed by the Extreme Ultraviolet Spectrometer (EIS) on board the textit{Hinode} satellite. We compared our measurements to the predictions from the Alfven Wave Solar Model (AWSoM) and the SPECTRUM module. We found that the Fe textsc{xii} and Fe textsc{xiii} line widths first increase monotonically below 1.1 $R_odot$, and then keep fluctuating between 1.1 and 1.5 $R_odot$. The synthetic line widths of Fe textsc{xii} and Fe textsc{xiii} below 1.3 $R_odot$ are notably lower than the observed ones. We found that the emission from a streamer in the line of sight significantly contaminates the coronal hole line profiles even up to 1.5 $R_odot$ both in observations and simulations. We suggest that either the discrepancy between the observations and simulations is caused by insufficient nonthermal broadening at the streamer in the AWSoM simulation or the observations are less affected by the streamer. Our results emphasize the importance of identifying the origin of the coronal EUV emission in off-limb observations.



قيم البحث

اقرأ أيضاً

The purpose of this paper is to analyze the variation in the line width with height in the inner corona (region above 1.1 Rsun), by using the spectral data from LASCO-C1 aboard SOHO. We used data acquired at activity minimum (August - October 1996) a nd during the ascending phase of the solar cycle (March 1998). Series of images acquired at different wavelengths across the Fe X 637.6 nm (red) and Fe XIV 530.3 nm (green) coronal lines by LASCO-C1 allowed us to build radiance and width maps of the off-limb solar corona. In 1996, the line width of Fe XIV was roughly constant or increased with height up to around 1.3 Rsun and then it decreased. The Fe X line width increased with height up to the point where the spectra were too noisy to allow line width measurements (around 1.3 Rsun). Fe X showed higher effective temperatures as compared with Fe XIV. In 1998 the line width of Fe XIV was roughly constant with height above the limb (no Fe X data available).
Heavy ions are markers of the physical processes responsible for the density and temperature distribution throughout the fine scale magnetic structures that define the shape of the solar corona. One of their properties, whose empirical determination has remained elusive, is the freeze-in distance (Rf) where they reach fixed ionization states that are adhered to during their expansion with the solar wind. We present the first empirical inference of Rf for Fe10+ and Fe13+ derived from multi-wavelength imaging observations of the corresponding FeXI (Fe10+) 789.2 nm and FeXIV (Fe13+) 530.3 nm emission acquired during the 2015 March 20 total solar eclipse. We find that the two ions freeze-in at different heliocentric distances. In polar coronal holes Rf is around 1.45 Rs for Fe10+ and below 1.25 Rs for Fe13+. Along open field lines in streamer regions Rf ranges from 1.4 to 2 Rs for Fe10+ and from 1.5 to 2.2 Rs for Fe13+. These first empirical Rf values: (1) reflect the differing plasma parameters between coronal holes and streamers and structures within them, including prominences and Coronal Mass Ejections (CMEs); (2) are well below the currently quoted values derived from empirical model studies; and (3) place doubt on the reliability of plasma diagnostics based on the assumption of ionization equilibrium beyond 1.2 Rs.
We have used an electron beam ion trap to measure electron-density-diagnostic line-intensity ratios for extreme ultraviolet lines from F XII, XIII, and XIV at wavelengths of 185-205 255-276 Angstroms. These ratios can be used as density diagnostics f or astrophysical spectra and are especially relevant to solar physics. We found that density diagnostics using the Fe XIII 196.53/202.04 and the Fe XIV 264.79/274.21 and 270.52A/274.21 line ratios are reliable using the atomic data calculated with the Flexible Atomic Code. On the other hand, we found a large discrepancy between the FAC theory and experiment for the commonly used Fe XII (186.85 + 186.88)/195.12 line ratio. These FAC theory calculations give similar results to the data tabulated in CHIANTI, which are commonly used to analyze solar observations. Our results suggest that the discrepancies seen between solar coronal density measurements using the Fe XII (186.85 + 186.88)/195.12 and Fe XIII 196.54/202.04 line ratios are likely due to issues with the atomic calculations for Fe XII.
We investigated the off-limb spicules observed in the Mg II h and k lines by IRIS in a solar polar coronal hole. We analyzed the large dataset of obtained spectra to extract quantitative information about the line intensities, shifts, and widths. The observed Mg II line profiles are broad and double-peaked at lower altitudes, broad but flat-topped at middle altitudes, and narrow and single-peaked with the largest Doppler shifts at higher altitudes. We use 1D non-LTE vertical slab models (i.e. models which consider departures from Local Thermodynamic Equilibrium) in single-slab and multi-slab configurations to interpret the observations and to investigate how a superposition of spicules along the line of sight (LOS) affects the synthetic Mg II line profiles. The used multi-slab models are either static, i.e. without any LOS velocities, or assume randomly assigned LOS velocities of individual slabs, representing the spicule dynamics. We conducted such single-slab and multi-slab modeling for a broad set of model input parameters and showed the dependence of the Mg II line profiles on these parameters. We demonstrated that the observed line widths of the h and k line profiles are strongly affected by the presence of multiple spicules along the LOS. We later showed that the profiles obtained at higher altitudes can be reproduced by single-slab models representing individual spicules. We found that the multi-slab model with a random distribution of the LOS velocities ranging from -25 to 25 km s$^{-1}$ can well reproduce the width and the shape of Mg II profiles observed at middle altitudes.
Information about the physical properties of astrophysical objects cannot be measured directly but is inferred by interpreting spectroscopic observations in the context of atomic physics calculations. Ratios of emission lines, for example, can be use d to infer the electron density of the emitting plasma. Similarly, the relative intensities of emission lines formed over a wide range of temperatures yield information on the temperature structure. A critical component of this analysis is understanding how uncertainties in the underlying atomic physics propagates to the uncertainties in the inferred plasma parameters. At present, however, atomic physics databases do not include uncertainties on the atomic parameters and there is no established methodology for using them even if they did. In this paper we develop simple models for the uncertainties in the collision strengths and decay rates for Fe XIII and apply them to the interpretation of density sensitive lines observed with the EUV Imagining spectrometer (EIS) on Hinode. We incorporate these uncertainties in a Bayesian framework. We consider both a pragmatic Bayesian method where the atomic physics information is unaffected by the observed data, and a fully Bayesian method where the data can be used to probe the physics. The former generally increases the uncertainty in the inferred density by about a factor of 5 compared with models that incorporate only statistical uncertainties. The latter reduces the uncertainties on the inferred densities, but identifies areas of possible systematic problems with either the atomic physics or the observed intensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا