ﻻ يوجد ملخص باللغة العربية
The recent measurement of a cutoff k_min in the fluctuation power spectrum P(k) of the cosmic microwave background may vitiate the possibility that slow-roll inflation can simultaneously solve the horizon problem and account for the formation of structure via the growth of quantum fluctuations in the inflaton field. Instead, we show that k_min may be interpreted more successfully in the R_h=ct cosmology, as the first mode exiting from the Planck scale into the semi-classical Universe shortly after the Big Bang. In so doing, we demonstrate that such a scenario completely avoids the well-known trans-Planckian problem plaguing standard inflationary cosmology.
In the standard model of cosmology, the Universe began its expansion with an anomalously low entropy, which then grew dramatically to much larger values consistent with the physical conditions at decoupling, roughly 380,000 years after the Big Bang.
Inflation drives quantum fluctuations beyond the Hubble horizon, freezing them out before the small-scale modes re-enter during the radiation dominated epoch, and subsequently decay, while large-scale modes re-enter later during the matter dominated
The aim of Quantum Fisher Cosmology is to use the quantum Fisher information about pure de Sitter states to derive model independent observational consequences of the existence of a primordial phase of the Universe of de Sitter accelerated expansion.
In any conformally invariant gravitational theory, the space of exact solutions is greatly enlarged. The Weyls conformal invariance can then be spontaneously broken to spherically symmetric vacuum solutions that exclude the spacetime region inside th
We point out that the nonempty $R_h=ct$ cosmological model has some known antecedents in the literature. Some of those eternal coasting models are published even before the discovery of the accelerated expansion of the universe and were shown to have