ﻻ يوجد ملخص باللغة العربية
We initiate the study of the inherent tradeoffs between the size of a neural network and its robustness, as measured by its Lipschitz constant. We make a precise conjecture that, for any Lipschitz activation function and for most datasets, any two-layers neural network with $k$ neurons that perfectly fit the data must have its Lipschitz constant larger (up to a constant) than $sqrt{n/k}$ where $n$ is the number of datapoints. In particular, this conjecture implies that overparametrization is necessary for robustness, since it means that one needs roughly one neuron per datapoint to ensure a $O(1)$-Lipschitz network, while mere data fitting of $d$-dimensional data requires only one neuron per $d$ datapoints. We prove a weaker version of this conjecture when the Lipschitz constant is replaced by an upper bound on it based on the spectral norm of the weight matrix. We also prove the conjecture in the high-dimensional regime $n approx d$ (which we also refer to as the undercomplete case, since only $k leq d$ is relevant here). Finally we prove the conjecture for polynomial activation functions of degree $p$ when $n approx d^p$. We complement these findings with experimental evidence supporting the conjecture.
Classically, data interpolation with a parametrized model class is possible as long as the number of parameters is larger than the number of equations to be satisfied. A puzzling phenomenon in deep learning is that models are trained with many more p
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, the problem remains open. In this paper, we analyse th
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure o
The vulnerability of deep neural networks (DNNs) to adversarial attack, which is an attack that can mislead state-of-the-art classifiers into making an incorrect classification with high confidence by deliberately perturbing the original inputs, rais
Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classifi