ﻻ يوجد ملخص باللغة العربية
In this paper, we present the results from spectroscopic and photometric observations of the M-type flare star YZ CMi in the framework of the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) collaborations during the Transiting Exoplanet Survey Satellite (TESS) observation period. We detected 145 white-light flares from the TESS light curve and 4 H$alpha$ flares from the OISTER observations performed between 2019-01-16 and 2019-01-18. Among them, 3 H$alpha$ flares were associated with white-light flares. However, one of them did not show clear brightening in continuum; during this flare, the H$alpha$ line exhibited blue-asymmetry which has lasted for $sim 60$ min. The line of sight velocity of the blue-shifted component is $-80$ - $-100$ km s$^{-1}$. This suggests that there can be upward flows of chromospheric cool plasma even without detectable red/NIR continuum brightening. By assuming that the blue-asymmetry in H$alpha$ line was caused by a prominence eruption on YZ CMi, we estimated the mass and kinetic energy of the upward-moving material to be $10^{16}$ - $10^{18}$ g and $10^{29.5}$ - $10^{31.5}$ erg, respectively. The estimated mass is comparable to expectations from the empirical relation between the flare X-ray energy and mass of upward-moving material for stellar flares and solar CMEs. In contrast, the estimated kinetic energy for the non-white-light flare on YZ CMi is roughly $2$ orders of magnitude smaller than that expected from the relation between flare X-ray energy and kinetic energy for solar CMEs. This could be understood by the difference in the velocity between CMEs and prominence eruptions.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T~10,000 K blackbody, and the white light in solar flares is thought to arise primarily from Hydrogen recombination. Yet, a current lack of broad wavelength
The ion{Fe}{i} lines observed by the Hinode/SOT spectropolarimeter were always seen in absorption, apart from the extreme solar limb. Here we analyse a unique dataset capturing these lines in emission during a solar white-light flare. We analyse the
We report the discovery and classification of SDSS~J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful $Delta V < -11$ magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate
M dwarfs are known to flare on timescales from minutes to hours, with flux increases of several magnitudes in the blue/near-UV. These frequent, powerful events, which are caused by magnetic reconnection, will have a strong observational signature in