ﻻ يوجد ملخص باللغة العربية
We present the first investigation of excited state dynamics by resonant Auger-Meitner spectroscopy (also known as resonant Auger spectroscopy) using the nucleobase thymine as an example. Thymine is photoexcited in the UV and probed with X-ray photon energies at and below the oxygen K-edge. After initial photoexcitation to a {pi}{pi}* excited state, thymine is known to undergo internal conversion to an n{pi}* excited state with a strong resonance at the oxygen K-edge, red-shifted from the ground state {pi}* resonances of thymine (see our previous study Wolf et al., Nat. Commun., 2017, 8, 29). We resolve and compare the Auger-Meitner electron spectra associated both with the excited state and ground state resonances, and distinguish participator and spectator decay contributions. Furthermore, we observe simultaneously with the decay of the n{pi}* state signatures the appearance of additional resonant Auger-Meitner contributions at photon energies between the n{pi}* state and the ground state resonances. We assign these contributions to population transfer from the n{pi}* state to a {pi}{pi}* triplet state via intersystem crossing on the picosecond timescale based on simulations of the X-ray absorption spectra in the vibrationally hot triplet state. Moreover, we identify signatures from the initially excited {pi}{pi}* singlet state which we have not observed in our previous study.
In quantum systems, coherent superpositions of electronic states evolve on ultrafast timescales (few femtosecond to attosecond, 1 as = 0.001 fs = 10^{-18} s), leading to a time dependent charge density. Here we exploit the first attosecond soft x-ray
Time-resolved spectroscopy provides the main tool for analyzing the dynamics of excitonic energy transfer in light-harvesting complexes. To infer time-scales and effective coupling parameters from experimental data requires to develop numerical exact
We identified interatomic Coulombic decay (ICD) channels in argon dimers after spectator-type resonant Auger decay $2p^{-1}~3d to 3p^{-2}3d, 4d$ in one of the atoms, using momentum resolved electron-ion-ion coincidence. The results illustrate that th
Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of c
We report ultrafast transient-grating measurements of crystals of the three-dimensional Dirac semimetal cadmium arsenide, Cd3As2, at both room temperature and 80 K. After photoexcitation with 1.5-eV photons, charge-carriers relax by two processes, on