ﻻ يوجد ملخص باللغة العربية
The isotope effect in the superconducting transition temperature is anomalous if the isotope coefficient $alpha<0$ or $alpha>1/2$. In this work, we show that such anomalous behaviors can naturally arise within the Bardeen-Cooper-Schrieffer framework if both phonon and non-phonon modes coexist. Different from the case of the standard Eliashberg theory (with only phonon) in which $alphale1/2$, the isotope coefficient can now take arbitrary values in the simultaneous presence of phonon and the other non-phonon mode. In particular, most strikingly, a pair-breaking phonon can give rise to large isotope coefficient $alpha>1/2$ if the unconventional superconductivity is mediated by the lower frequency non-phonon boson mode. Based on our studies, implications on several families of superconductors are discussed.
The role of electron-phonon interactions in iron-based superconductor is currently under debate with conflicting experimental reports on the isotope effect. To address this important issue, we employ the renormalization-group method to investigate th
We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the top
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co
Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE
An inelastic neutron scattering experiment has been performed in the high-temperature superconductor $rm YBa_2Cu_3O_{6.89}$ to search for an oxygen-isotope shift of the well-known magnetic resonance mode at 41 meV. Contrary to a recent prediction (I.