ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroeconomic forecasting through news, emotions and narrative

73   0   0.0 ( 0 )
 نشر من قبل Giacomo Livan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This study proposes a new method of incorporating emotions from newspaper articles into macroeconomic forecasts, attempting to forecast industrial production and consumer prices leveraging narrative and sentiment from global newspapers. For the most part, existing research includes positive and negative tone only to improve macroeconomic forecasts, focusing predominantly on large economies such as the US. These works use mainly anglophone sources of narrative, thus not capturing the entire complexity of the multitude of emotions contained in global news articles. This study expands the existing body of research by incorporating a wide array of emotions from newspapers around the world - extracted from the Global Database of Events, Language and Tone (GDELT) - into macroeconomic forecasts. We present a thematic data filtering methodology based on a bi-directional long short term memory neural network (Bi-LSTM) for extracting emotion scores from GDELT and demonstrate its effectiveness by comparing results for filtered and unfiltered data. We model industrial production and consumer prices across a diverse range of economies using an autoregressive framework, and find that including emotions from global newspapers significantly improves forecasts compared to three autoregressive benchmark models. We complement our forecasts with an interpretability analysis on distinct groups of emotions and find that emotions associated with happiness and anger have the strongest predictive power for the variables we predict.



قيم البحث

اقرأ أيضاً

235 - Haewoon Kwak , Jisun An 2014
In this work, we reveal the structure of global news coverage of disasters and its determinants by using a large-scale news coverage dataset collected by the GDELT (Global Data on Events, Location, and Tone) project that monitors news media in over 1 00 languages from the whole world. Significant variables in our hierarchical (mixed-effect) regression model, such as the number of population, the political stability, the damage, and more, are well aligned with a series of previous research. Yet, strong regionalism we found in news geography highlights the necessity of the comprehensive dataset for the study of global news coverage.
The rise of fake news in the past decade has brought with it a host of consequences, from swaying opinions on elections to generating uncertainty during a pandemic. A majority of methods developed to combat disinformation either focus on fake news co ntent or malicious actors who generate it. However, the virality of fake news is largely dependent upon the users who propagate it. A deeper understanding of these users can contribute to the development of a framework for identifying users who are likely to spread fake news. In this work, we study the characteristics and motivational factors of fake news spreaders on social media with input from psychological theories and behavioral studies. We then perform a series of experiments to determine if fake news spreaders can be found to exhibit different characteristics than other users. Further, we investigate our findings by testing whether the characteristics we observe amongst fake news spreaders in our experiments can be applied to the detection of fake news spreaders in a real social media environment.
We develop the methodology and a detailed case study in use of a class of Bayesian predictive synthesis (BPS) models for multivariate time series forecasting. This extends the recently introduced foundational framework of BPS to the multivariate sett ing, with detailed application in the topical and challenging context of multi-step macroeconomic forecasting in a monetary policy setting. BPS evaluates-- sequentially and adaptively over time-- varying forecast biases and facets of miscalibration of individual forecast densities, and-- critically-- of time-varying inter-dependencies among them over multiple series. We develop new BPS methodology for a specific subclass of the dynamic multivariate latent factor models implied by BPS theory. Structured dynamic latent factor BPS is here motivated by the application context-- sequential forecasting of multiple US macroeconomic time series with forecasts generated from several traditional econometric time series models. The case study highlights the potential of BPS to improve of forecasts of multiple series at multiple forecast horizons, and its use in learning dynamic relationships among forecasting models or agents.
140 - Sonja Tilly , Giacomo Livan 2021
This study leverages narrative from global newspapers to construct theme-based knowledge graphs about world events, demonstrating that features extracted from such graphs improve forecasts of industrial production in three large economies compared to a number of benchmarks. Our analysis relies on a filtering methodology that extracts backbones of statistically significant edges from large graph data sets. We find that changes in the eigenvector centrality of nodes in such backbones capture shifts in relative importance between different themes significantly better than graph similarity measures. We supplement our results with an interpretability analysis, showing that the theme categories disease and economic have the strongest predictive power during the time period that we consider. Our work serves as a blueprint for the construction of parsimonious - yet informative - theme-based knowledge graphs to monitor in real time the evolution of relevant phenomena in socio-economic systems.
We move beyond Is Machine Learning Useful for Macroeconomic Forecasting? by adding the how. The current forecasting literature has focused on matching specific variables and horizons with a particularly successful algorithm. In contrast, we study the usefulness of the underlying features driving ML gains over standard macroeconometric methods. We distinguish four so-called features (nonlinearities, regularization, cross-validation and alternative loss function) and study their behavior in both the data-rich and data-poor environments. To do so, we design experiments that allow to identify the treatment effects of interest. We conclude that (i) nonlinearity is the true game changer for macroeconomic prediction, (ii) the standard factor model remains the best regularization, (iii) K-fold cross-validation is the best practice and (iv) the $L_2$ is preferred to the $bar epsilon$-insensitive in-sample loss. The forecasting gains of nonlinear techniques are associated with high macroeconomic uncertainty, financial stress and housing bubble bursts. This suggests that Machine Learning is useful for macroeconomic forecasting by mostly capturing important nonlinearities that arise in the context of uncertainty and financial frictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا